
GPU-based Parallel
Algorithm for
Generating Massive
Scale-free Networks
Using the
Preferential
Attachment Model
Maksudul Alam Kalyan S. Perumalla
Discrete Computing Systems Group
Computer Science and Mathematics Division
Oak Ridge National Laboratory, TN, USA

IEEE BigGraphs, Boston | Dec 11, 2017

ORNL is managed by UT-Battelle for the US Department of Energy



Emergence of Large Graphs

Technological advancement led to
Explosive growth of complex systems
Availability of huge volume of data

316M active Twitter users
500M tweets per day

1.49B active Facebook users
4.75B content per day

3.3B active Internet users
958B websites, 3.5B searches/day

Interactions among entities can be modeled by graphs
Large complex systems and big data lead to large graphs
Some patterns and behavior emerge only in large graphs

2



Scale-Free Graph Models and GPU-based Generation1

Various random graph models exist to capture the scale-free property

Barabási–Albert
Copy-Model
Recursive Matrix (RMAT)
Stochastic Kronecker
Etc.

GPU-Based Graph Generation
Few GPU-based generators
exist for networks
No GPU-based generators exist
for scale-free networks

Challenges in GPU-based Execution
Using shared memory efficiently
Load balancing across many threads
Reducing thread and block
synchronization overhead

1GPU=Graphical Processing Unit

3



Central Processing Unit (CPU) vs. Graphical Processing Unit (GPU)
GPUs are highly parallel, multi-threaded, many-core processors

Offer high throughput data processing Single Instruction Multiple Data (SIMD)

Extensively used in big data analytics and time-critical scientific computing

Cores Architecture
CPU

Optimized for low-latency memory
access and coarse-grained threads
General-purpose, suitable for many
applications

Cores Architecture
GPU

Optimized for fine-grained
data-parallel SIMD execution
Programmed via special interface
E.g., Common Unified Memory Architecture (CUDA)

4



Contributions in this Paper

Developed an efficient GPU–based network generator, called cuPPA
[CUDA-based Parallel Preferential Attachment]

Generated graphs with 2B edges in less than 3 seconds using a single GPU

5



Background: Preferential Attachment using the Copy Model

One node is added at a time using the following steps:
A new node t is being added (0 ≤ t < n)
F(t) = a random node to which the new node t connects (F(t) < t)

F(t) is the “outgoing end” of the edge from t i.e., (t,F(t))

1 Step 1: Randomly select k ∈ [1, t − 1]
2 Step 2: Determine F(t) as follow:

Direct Edge: F(t) = k with probability p
Copy Edge: F(t) = F(k) with probability 1 − p

3 Step 3: Repeat the above d times to create d edges with t

Initial

Growth

6



Background: Preferential Attachment using the Copy Model

One node is added at a time using the following steps:
A new node t is being added (0 ≤ t < n)
F(t) = a random node to which the new node t connects (F(t) < t)

F(t) is the “outgoing end” of the edge from t i.e., (t,F(t))

1 Step 1: Randomly select k ∈ [1, t − 1]
2 Step 2: Determine F(t) as follow:

Direct Edge: F(t) = k with probability p
Copy Edge: F(t) = F(k) with probability 1 − p

3 Step 3: Repeat the above d times to create d edges with t

tk

Initial

Growth

7



Background: Preferential Attachment using the Copy Model

One node is added at a time using the following steps:
A new node t is being added (0 ≤ t < n)
F(t) = a random node to which the new node t connects (F(t) < t)

F(t) is the “outgoing end” of the edge from t i.e., (t,F(t))

1 Step 1: Randomly select k ∈ [1, t − 1]
2 Step 2: Determine F(t) as follow:

Direct Edge: F(t) = k with probability p
Copy Edge: F(t) = F(k) with probability 1 − p

3 Step 3: Repeat the above d times to create d edges with t

tk

tkp
Initial

Growth

8



Background: Preferential Attachment using the Copy Model

One node is added at a time using the following steps:
A new node t is being added (0 ≤ t < n)
F(t) = a random node to which the new node t connects (F(t) < t)

F(t) is the “outgoing end” of the edge from t i.e., (t,F(t))

1 Step 1: Randomly select k ∈ [1, t − 1]
2 Step 2: Determine F(t) as follow:

Direct Edge: F(t) = k with probability p
Copy Edge: F(t) = F(k) with probability 1 − p

3 Step 3: Repeat the above d times to create d edges with t

tk

tk

tk

p

1−p

Initial

Growth

9



Background: Preferential Attachment using the Copy Model

One node is added at a time using the following steps:
A new node t is being added (0 ≤ t < n)
F(t) = a random node to which the new node t connects (F(t) < t)

F(t) is the “outgoing end” of the edge from t i.e., (t,F(t))

1 Step 1: Randomly select k ∈ [1, t − 1]
2 Step 2: Determine F(t) as follow:

Direct Edge: F(t) = k with probability p
Copy Edge: F(t) = F(k) with probability 1 − p

3 Step 3: Repeat the above d times to create d edges with t

tk

tk

tk

p

1−p

Initial

Growth

10



Background: Properties of the Copy Model

More general than the Barabási–Albert Model
When p = 1

2 Copy Model = Barabási–Albert Model
Alam, Khan and Marathe, “Distributed-memory parallel algorithms for generating massive scale-free networks...,” SC’13

Degree distribution of the generated networks for n = 250M, d = 4, and p = [0.0, 0.01, 0.50, 0.99, 1.00]
in log− log scale.

11



cuPPA: Parallel Algorithm
Generate the edges in a series of R rounds
In each round r, process nr =

n
R vertices using T available GPU threads

1 Execute Copy Model on each vertex in current round in parallel:
Direct edges are generated immediately
Copy edges may have some dependencies

1 No dependency, if the chosen node k is processed in previous rounds
2 Only case of dependency: k in current round and F(k) unresolved

Put the edges with dependencies in a queue called Waiting Queue to be
processed later

2 Process items on the Waiting Queue after executing Copy Model

tk

tk

tk

p

1−p

Direct Edge

CopyEdge

12



cuPPA: Parallel Algorithm

v0 vn−1

Round 2Round 1 Round r Round R

T0 T1 T2 T3

T0 T1 T2 T3 T0 T1 T2 T3

Completed In-Process To Be Processed

Approach 1: Consecutive Partitioning

Approach 2: Round-Robin Partitioning

Q0 Q3Q1 Q2

Waiting Queue per Thread

tk

tk

tk

p

1−p

Direct Edge

CopyEdge13



cuPPA: Dynamic Load Balancing

Worst 
Case

1

10

100

1,000

20 21 22 23 24 25 26 27 28 29 210 211 212

d

W
ai

tin
g 

Q
ue

ue
 S

iz
e

p=0
p=0.25
p=0.5
p=0.75

p=0.9
p=0.95
p=1

Maximum queue size per vertex increases with d

0

50

100

150

0 25 50 75 100

Round

W
ai

tin
g 

Q
ue

ue
 S

iz
e d=512

d=256
d=128
d=64

Queue size decreases significantly with progressive rounds

In the worst case, a Waiting Queue with capacity d per vertex is required
Let waiting queue capacity be C items per thread
Due to limited GPU shared memory, we can only process C

d vertices per thread
In reality, number items placed in the waiting queue reduces drastically with rounds
More vertices can be processed per thread
Start with smaller number of vertices, increase with rounds

14



cuPPA: Tradeoff between Hardware Concurrency and Waiting Queue

0

20

40

60

1

2

3

4

5

6

64 128 256 512 1,024

Number of Threads (per Block)

R
un

tim
e 

(s
ec

o
nd

s) R
elative G

ain

n=125M, d=16 n=250M, d=8
n=500M, d=4 n=62.5M, d=32

Runtime vs. Number of Threads

Increasing the number of threads increases relative gain in speed
Most gain is observed with 512 threads per block

15



cuPPA: Runtime vs. Number of Vertices with varying p

0

2

4

6

0 5.0× 108 109 1.5× 109 2.0× 109

E

R
un

tim
e 

(s
ec

o
nd

s)

p=0
p=0.001
p=0.25

p=0.5
p=0.75
p=1

Runtime vs. Number of Vertices (varying p)

Runtime varies linearly with increasing number of vertices
Scales to a large number of vertices

16



cuPPA: Runtime vs. Number of Vertices with varying d

0

10

20

30

0 5.0× 106 107 1.5× 107

n

R
un

tim
e 

(s
ec

o
nd

s)

d=1
d=2
d=4
d=8

d=16
d=32
d=64
d=128

Runtime vs. Number of Vertices (varying d)

Runtime varies linearly with increasing number of vertices
Scales to a large number of vertices

17



cuPPA: Runtime Comparison
386.6 

344.4 

68.8 

2.7 
0

60 

120 

180 

240 

300 

360 

420 

SBA SCM PPA-DM cuPPA

R
un

tim
e 

(s
ec

o
nd

s)

Runtime of for generating 2B edges (n = 500M, d = 4)

Systems
CPU GPU

Make AMD Opteron NVIDIA GeForce
Model 6174 1080
Clock 800 MHz 1607 MHz
Memory 64 GB 8 GB
Compilation g++ -O3 CUDA 8 nvcc -O3

Generators Compared
Generator Hardware

SBA Sequential Barabási-Albert 1 CPU core
SCM Sequential Copy-Model 1 CPU core
PPA-DM Distributed–memory based 24 CPU cores, MPI
cuPPA GPU-based 1 GPU

18



cuPPA: Summary of Results

Contributions
Designed and implemented GPU-based parallel algorithm

Efficient and scalable
Generates massive networks: 2 billion edges in 2.7 seconds

Performed theoretical and experimental analysis

Future Work
Code profiling for further optimizations
Using multiple-GPU to generate large networks
Algorithms for hybrid CPU-GPU architechtures
Network conversion to other popular formats

19



cuPPA: Summary of Results

Contributions
Designed and implemented GPU-based parallel algorithm

Efficient and scalable
Generates massive networks: 2 billion edges in 2.7 seconds

Performed theoretical and experimental analysis

Future Work
Code profiling for further optimizations
Using multiple-GPU to generate large networks
Algorithms for hybrid CPU-GPU architechtures
Network conversion to other popular formats

20


	Background
	Emergence of Large Graphs
	Scale-Free Graph Models and GPU-based Generation
	Our Contributions

	Distributed-Memory Parallel Algorithms for Generating Massive Scale–free Networks Using Preferential Attachment Model
	Preferential Attachment
	Summary


