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Emergence of Large Graphs

Technological advancement led to
Explosive growth of complex systems
Availability of huge volume of data

316M active Twitter users
500M tweets per day

1.49B active Facebook users
4.75B content per day

3.3B active Internet users
958B websites, 3.5B searches/day

Interactions among entities can be modeled by graphs
Large complex systems and big data lead to large graphs
Some patterns and behavior emerge only in large graphs
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Scale-Free Graph Models and GPU-based Generation1

Various random graph models exist to capture the scale-free property

Barabási–Albert
Copy-Model
Recursive Matrix (RMAT)
Stochastic Kronecker
Etc.

GPU-Based Graph Generation
Few GPU-based generators
exist for networks
No GPU-based generators exist
for scale-free networks

Challenges in GPU-based Execution
Using shared memory efficiently
Load balancing across many threads
Reducing thread and block
synchronization overhead

1GPU=Graphical Processing Unit
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Central Processing Unit (CPU) vs. Graphical Processing Unit (GPU)
GPUs are highly parallel, multi-threaded, many-core processors

Offer high throughput data processing Single Instruction Multiple Data (SIMD)

Extensively used in big data analytics and time-critical scientific computing

Cores Architecture
CPU

Optimized for low-latency memory
access and coarse-grained threads
General-purpose, suitable for many
applications

Cores Architecture
GPU

Optimized for fine-grained
data-parallel SIMD execution
Programmed via special interface
E.g., Common Unified Memory Architecture (CUDA)
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Contributions in this Paper

Developed an efficient GPU–based network generator, called cuPPA
[CUDA-based Parallel Preferential Attachment]

Generated graphs with 2B edges in less than 3 seconds using a single GPU
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Background: Preferential Attachment using the Copy Model

One node is added at a time using the following steps:
A new node t is being added (0 ≤ t < n)
F(t) = a random node to which the new node t connects (F(t) < t)

F(t) is the “outgoing end” of the edge from t i.e., (t,F(t))

1 Step 1: Randomly select k ∈ [1, t − 1]
2 Step 2: Determine F(t) as follow:

Direct Edge: F(t) = k with probability p
Copy Edge: F(t) = F(k) with probability 1 − p

3 Step 3: Repeat the above d times to create d edges with t

Initial

Growth
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Background: Properties of the Copy Model

More general than the Barabási–Albert Model
When p = 1

2 Copy Model = Barabási–Albert Model
Alam, Khan and Marathe, “Distributed-memory parallel algorithms for generating massive scale-free networks...,” SC’13

Degree distribution of the generated networks for n = 250M, d = 4, and p = [0.0, 0.01, 0.50, 0.99, 1.00]
in log− log scale.
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cuPPA: Parallel Algorithm
Generate the edges in a series of R rounds
In each round r, process nr =

n
R vertices using T available GPU threads

1 Execute Copy Model on each vertex in current round in parallel:
Direct edges are generated immediately
Copy edges may have some dependencies

1 No dependency, if the chosen node k is processed in previous rounds
2 Only case of dependency: k in current round and F(k) unresolved

Put the edges with dependencies in a queue called Waiting Queue to be
processed later

2 Process items on the Waiting Queue after executing Copy Model

tk

tk

tk

p

1−p

Direct Edge

CopyEdge

12



cuPPA: Parallel Algorithm

v0 vn−1

Round 2Round 1 Round r Round R

T0 T1 T2 T3

T0 T1 T2 T3 T0 T1 T2 T3

Completed In-Process To Be Processed

Approach 1: Consecutive Partitioning

Approach 2: Round-Robin Partitioning

Q0 Q3Q1 Q2

Waiting Queue per Thread
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cuPPA: Dynamic Load Balancing
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Queue size decreases significantly with progressive rounds

In the worst case, a Waiting Queue with capacity d per vertex is required
Let waiting queue capacity be C items per thread
Due to limited GPU shared memory, we can only process C

d vertices per thread
In reality, number items placed in the waiting queue reduces drastically with rounds
More vertices can be processed per thread
Start with smaller number of vertices, increase with rounds
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cuPPA: Tradeoff between Hardware Concurrency and Waiting Queue
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Increasing the number of threads increases relative gain in speed
Most gain is observed with 512 threads per block
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cuPPA: Runtime vs. Number of Vertices with varying p
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Runtime varies linearly with increasing number of vertices
Scales to a large number of vertices
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cuPPA: Runtime vs. Number of Vertices with varying d
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cuPPA: Runtime Comparison
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Runtime of for generating 2B edges (n = 500M, d = 4)

Systems
CPU GPU

Make AMD Opteron NVIDIA GeForce
Model 6174 1080
Clock 800 MHz 1607 MHz
Memory 64 GB 8 GB
Compilation g++ -O3 CUDA 8 nvcc -O3

Generators Compared
Generator Hardware

SBA Sequential Barabási-Albert 1 CPU core
SCM Sequential Copy-Model 1 CPU core
PPA-DM Distributed–memory based 24 CPU cores, MPI
cuPPA GPU-based 1 GPU
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cuPPA: Summary of Results

Contributions
Designed and implemented GPU-based parallel algorithm

Efficient and scalable
Generates massive networks: 2 billion edges in 2.7 seconds

Performed theoretical and experimental analysis

Future Work
Code profiling for further optimizations
Using multiple-GPU to generate large networks
Algorithms for hybrid CPU-GPU architechtures
Network conversion to other popular formats
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