

1

Arabesque

A system for distributed graph mining

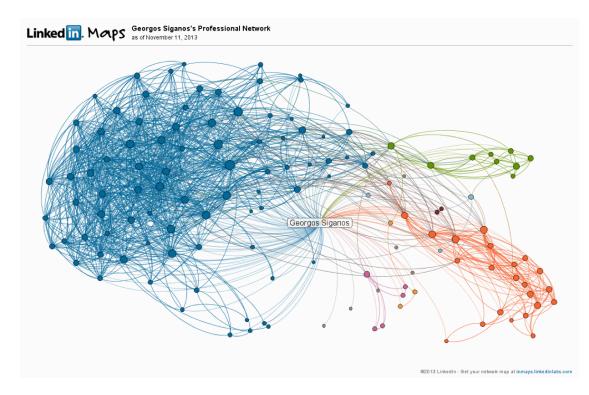
Mohammed Zaki, RPI

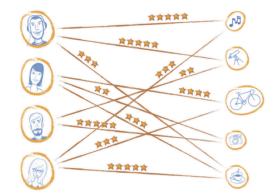
Carlos Teixeira, Alexandre Fonseca, Marco Serafini, Georgos Siganos, Ashraf Aboulnaga, Qatar Computing Research Institute (QCRI)

Big Data

- Why has data analytics become so hot?
 - Physical and digital worlds increasingly intertwined
 - More and more digital breadcrumbs
 - More and more applications
 - Hadoop has made data analytics accessible
- Key drivers in systems research
 - Define **abstractions** that ease development
 - Systems that efficiently implement them

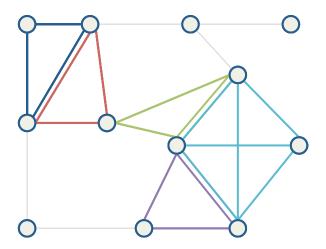
Graphs are Ubiquitous





Graph Mining Algorithms

- Finding subgraphs of interest in (labeled) input graphs
- Examples: Clique finding

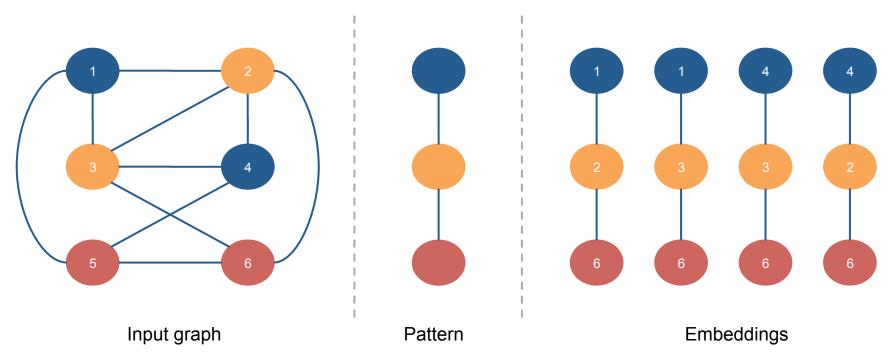


• Others: frequent subgraph mining, motifs

Applications

- Web:
 - Community detection, link spam detection
- Semantic data:
 - Attributed patterns in RDF
- Biology:
 - Protein-protein or gene interactions

Some Terminology

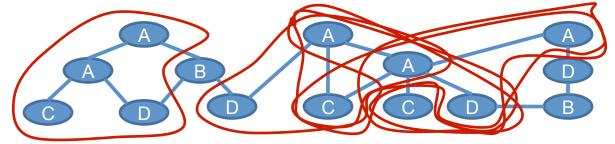


Example: Frequent Graph Mining

Frequent Subgraph Discovery

Frequent Subgraph Discovery

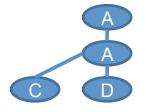
Mining frequent subgraphs from a single large graph



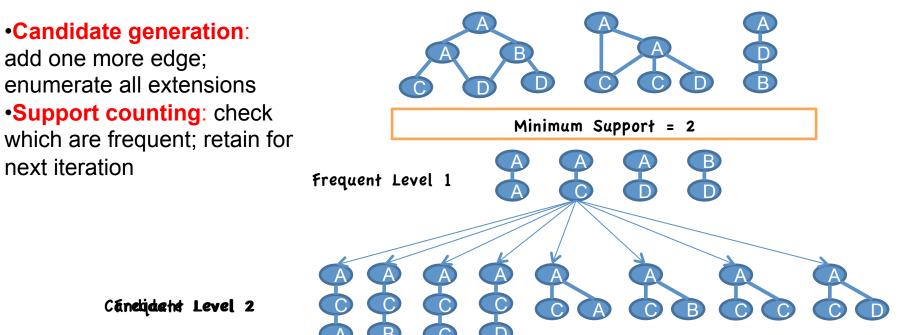
•Find subgraphs that have a minimum embedding count

- •Total (6)
- •Edge Disjoint (3)
- •Vertex Disjoint (2)

•NP-Hard to find edge/vertex disjoint from total



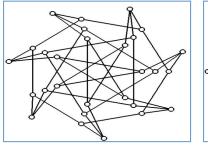
Subgraph Mining: Complete Level-wise Search

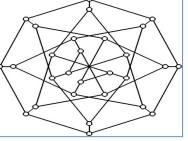


Taming of the Morphisms

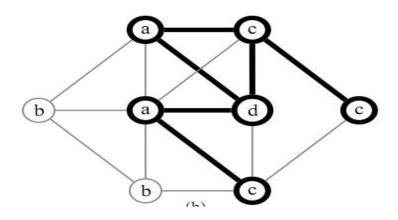
Challenge of isomorphismsHow to detect duplicates?

•Graph Isomorphism



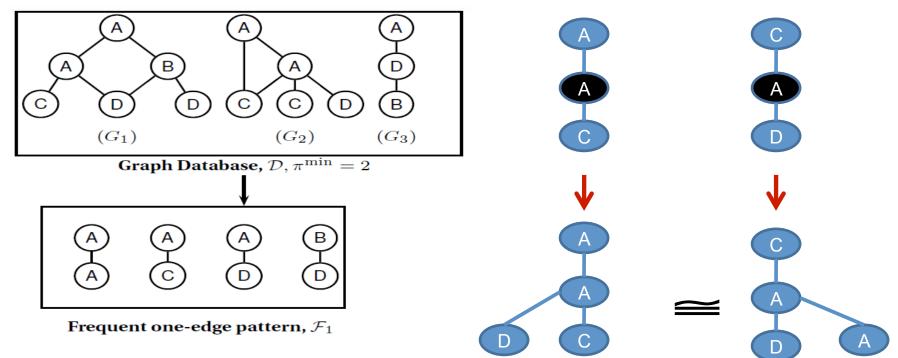


How to count occurrences?Subgraph Isomorphism

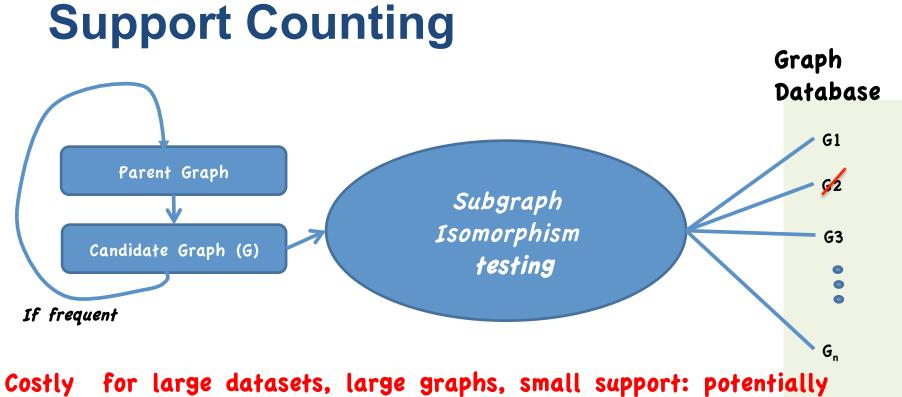


Candidate Generation

Can be very expensive: potentially millions of isomorphism checks



Graph isomorphism

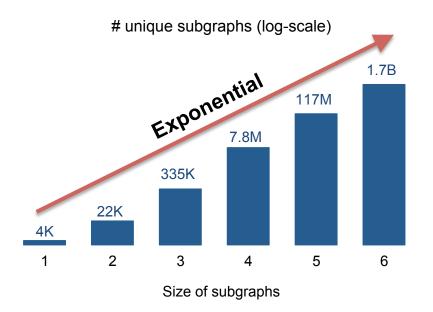


millions of subgraph isomorphism checks

Arabesque for Graph Mining

Challenge

Exponential number of subgraphs/embeddings

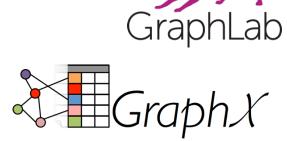


State of the Art: Custom Algorithms

	Easy to	High	Transparent
	Code	Performance	Distribution
Custom Algorithms	X		X

State of the Art: Think Like a Vertex

	Easy to Code	Efficient Implementation	Transparent Distribution
Custom Algorithms	X		X
Think Like a Vertex	X	X	



Arabesque

- New system & execution model
 - Purpose-built for graph mining
 - New "Think Like an Embedding" model
- Contributions:
 - Simple & Generic API
 - High performance
 - Distributed & Scalable by design

Arabesque

	Easy to Code	High Performance	Transparent Distribution	
Custom Algorithms	X		X	
Think Like a Vertex	X	X		A P A C H E G I R A P H
Arabesque				

Arabesque API - Clique finding

```
boolean filter(Embedding e) {
1
                                                          State of the Art
 2
        return isClique(e);
 3
                                                          (Mace, centralized)
    }
4
                                                            4,621 LOC
5
   void process(Embedding e) {
6
        output(e);
 7
   }
8
9
   boolean isClique(Embedding e) {
        return e.getNumEdgesAdded() == e.getNumberOfVertices() - 1;
10
11
   }
```

Arabesque API - Motif Counting

```
boolean filter(Embedding e) {
1
                                                               State of the Art
        return e.getNumVertices() <= MAX SIZE;</pre>
 2
                                                            (GTrieScanner, centralized)
 3
    }
4
                                                                 <u>3,145 LOC</u>
    void process(Embedding e) {
5
        mapOutput(e.getPattern(), 1);
6
 7
    }
8
    Pair<Pattern, Integer> reduceOutput(Pattern p, List<Integer> counts) {
9
        return new Pair(p, sum(counts));
10
   }
11
```

Arabesque API - Frequent Subgraph mining

- Ours was the first distributed implementation
- 280 lines of Java code...
 - ... of which 212 compute frequency metric
- Baseline (GRAMI): 5,443 lines of Java

Arabesque: An Efficient System

• COST: As efficient as centralized state of the art

Application - Graph	Centralized Baseline	Arabesque 1 thread
Motifs - MiCo (MS=3)	50s	37s
Cliques - MiCo (MS=4)	281s	385s
FSM - CiteSeer (S=300)	4.8s	5s

Arabesque: A Scalable System

- Scalable to thousands of workers
- Hours/days \rightarrow Minutes

Application - Graph	Centralized Baseline	Arabesque 640 cores
Motifs - MiCo	2 hours 24 minutes	25 seconds
Cliques - MiCo	4 hours 8 minutes	1 minute 10 seconds
FSM - Patents	> 1 day	1 minute 28 seconds

Can process graphs with almost 1 billion edges

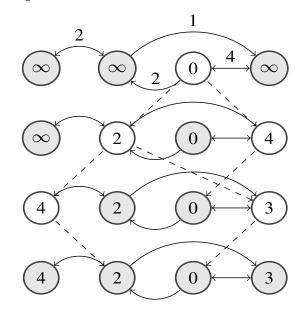
Alternative Paradigms?

Think Like a Vertex

- Application = Stateful vertex object
- Vertices sends messages to their neighbors
- Easy to scale to large graphs: partition by vertex
- Bulk Synchronous Programming (BSP)
 - 1. Receive from all neighbors
 - 2. Compute new state
 - 3. Send to all neighbors

Example: Shortest Path

- Input: Graph (weighted edges), source vertex
- Output: Min source vertex distance



Superstep 0 message values = 2 and 4

Superstep 1 message values = 4, 3, and 8

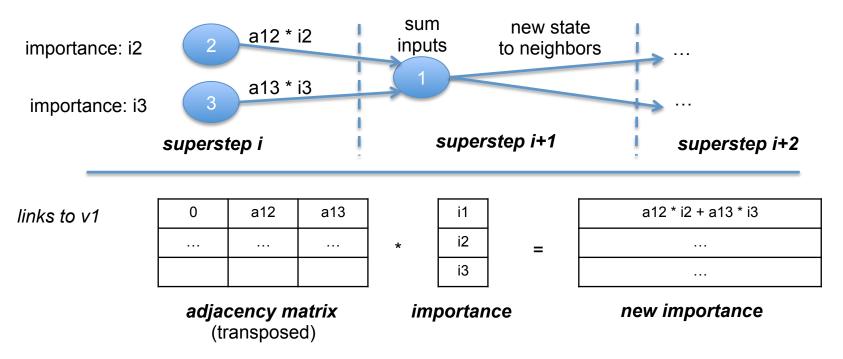
Superstep 2 message values = 6 and 7

Superstep 3 Complete, no new messages

Example taken from: [McCune et al., arxiv:1507.04405 (2015)]

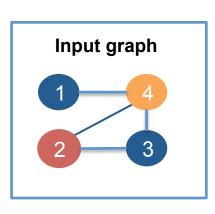
Matrix-Vector Multiplication

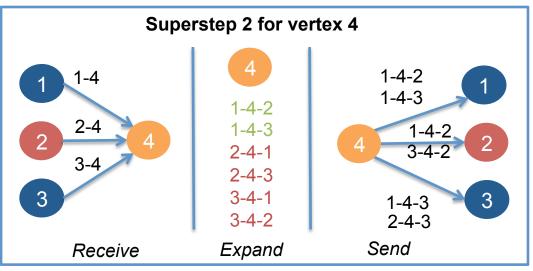
• E.g. Page-Rank style computation



Graph Exploration with TLV

- 1. Receive embeddings
- 2. Expand by adding neighboring vertices
- 3. Send *canonical* embeddings to their constituting vertices





Think Like a Pattern

- Many existing algorithms keep state by pattern
- Advantages
 - Rebuild embeddings from scratch
 - No need to materialize full intermediate state
- Idea of TLP:
 - Assign different patterns to different machines
 - Avoid storing materialized embedding

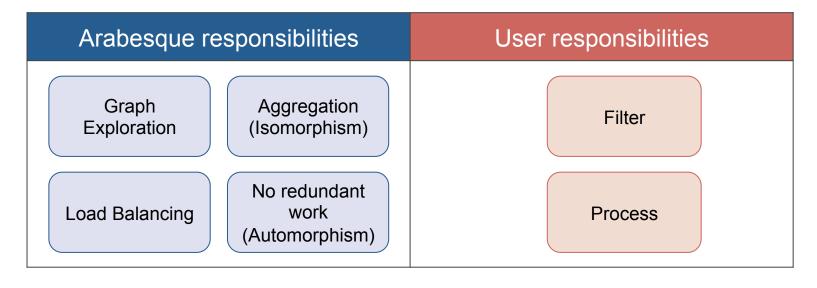
Arabesque Details

How: Arabesque Optimizations

- Avoid Redundant Work
 - Efficient canonicality checking
- Embedding Compression
 - Overapproximating Directed Acyclic Graphs (ODAGs)
- Efficient Aggregation
 - 2-level pattern aggregation

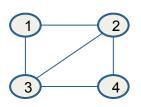
Arabesque: Fundamentals

- Subgraphs as 1st class citizens:
 - Embedding == Subgraph
 - Think Like an Embedding model



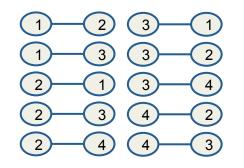
Graph Exploration

- Iterative expansion
 - Subgraph order $n \rightarrow$ Subgraph order n + 1
 - Connect to neighbours, one vertex at a time.



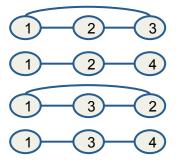
Input graph

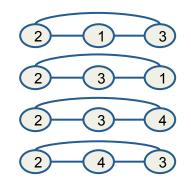
Depth 1

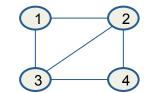


Depth 2

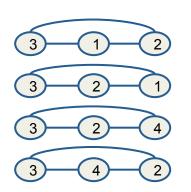
Graph Exploration



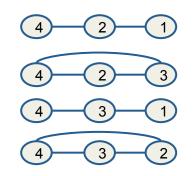




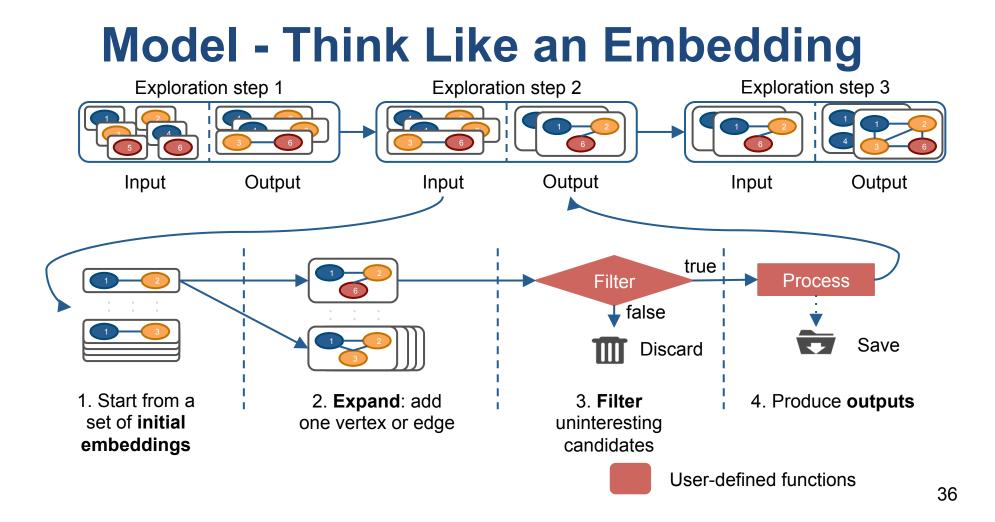
Input graph



Depth 3

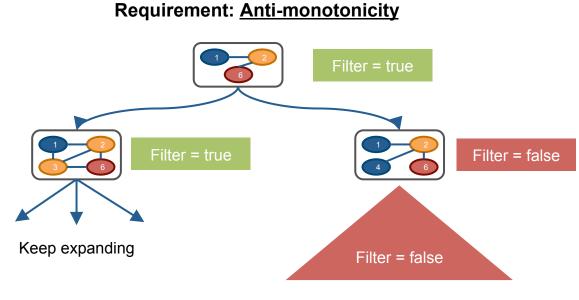


35



Guarantee: Completeness

For each e, if Filter(e) == true then Process(e) is executed

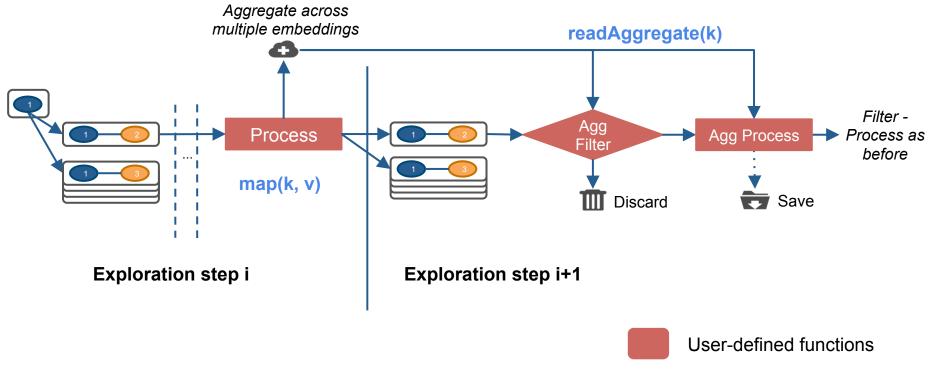


We can **prune** and be sure that we won't ignore desired embeddings

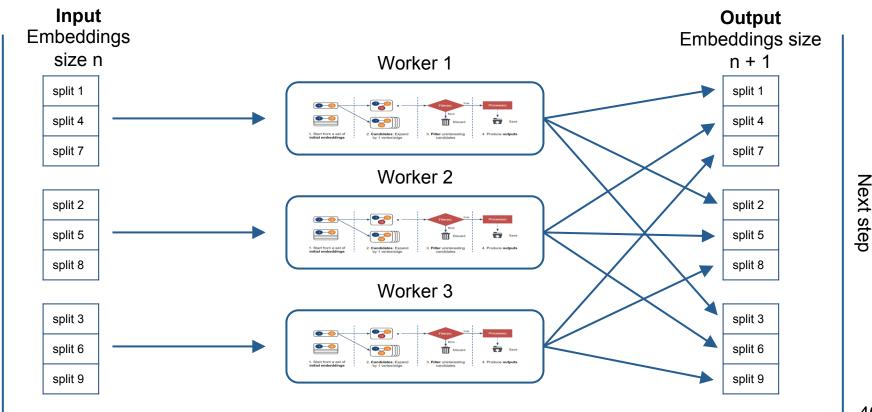
Aggregation

- Some applications must aggregate across embeddings
 - E.g., Frequent subgraph mining: Count embeddings with same pattern
- Aggregation in parallel with exploration step

Aggregation



System Architecture



Previous step

40

Arabesque API

• App-defined functions:

- . boolean filter(Embedding e)
- void process(Embedding e)
- boolean aggregationFilter(Embedding e)
- void aggregationProcess(Embedding e)
- Pair<K,V> reduce(K key, List<V> values)
- Pair<K,V> reduceOutput(K key, List<V> values)

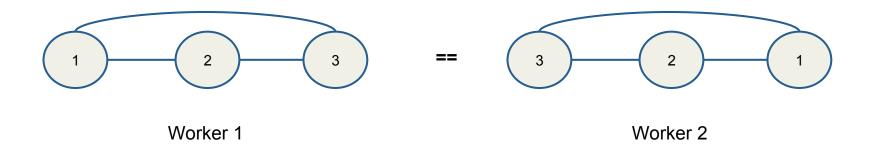
Functions provided by Arabesque:

- void map(K key, V value)
- V readAggregate(K key)
- void output(Object value)
- . void mapOutput(K key, V value)

Technical Challenges

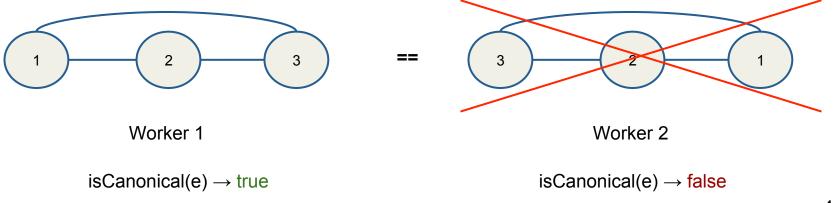
Avoiding redundant work

- **Problem:** Automorphic embeddings
 - Automorphisms == subgraph equivalences
 - Redundant work



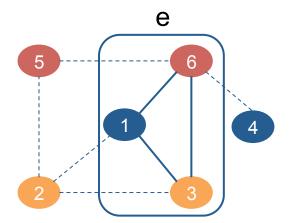
Avoiding redundant work

- Solution: Decentralized Embedding Canonicality
 - No coordination
 - Efficient



Embedding Canonicality

 isCanonical(e) *iff* at every step add neighbor with smallest ID



Initial embedding (e)

• 1 - 3 - 6

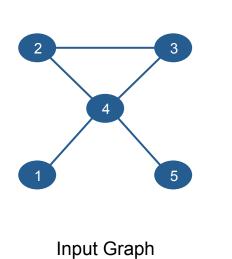
Expansions:

- $1 3 6 5 \rightarrow \text{canonical}$
- $1 3 6 4 \rightarrow \text{canonical}$
- $1 3 6 2 \rightarrow \text{not canonical} (1 2 3 6)$

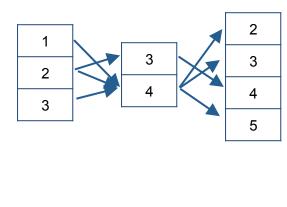
Handling Exponential growth

- Goal: handle trillions+ different embeddings?
- Solution: Overapproximating DAGs (ODAGs)
 - Compress into less restrictive superset
 - Deal with spurious embeddings

1



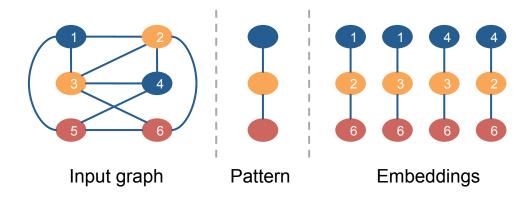
Canonical Embeddings			
1	4	2	
1	4	3	
1	4	5	
2	3	4	
2	4	5	
3	4	5	
Embedding List			



ODAG

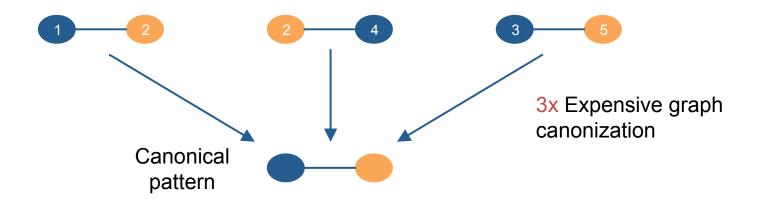
Aggregation by Pattern

- Label
 - Distinguishable property of a vertex (e.g. color).
- Pattern "Meta" sub-graph or the template.
 - Captures subgraph structure and labelling
- Embedding Instance of a pattern.
 - Actual vertices and edges



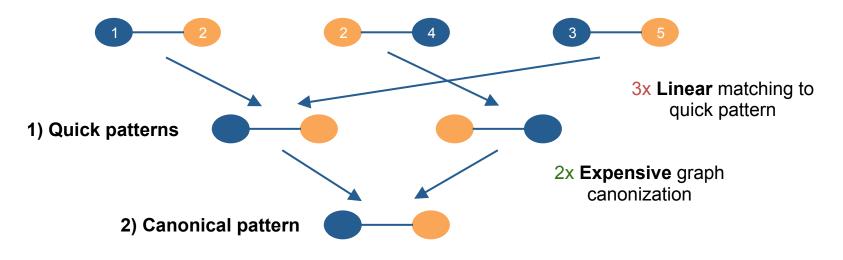
Efficient Pattern Aggregation

- Goal: Aggregate automorphic patterns to single key
 - Find canonical pattern
 - No known polynomial solution



Efficient Pattern Aggregation

- Solution: 2-level pattern aggregation
 - 1. Embeddings \rightarrow quick patterns
 - 2. Quick patterns \rightarrow canonical pattern



Evaluation

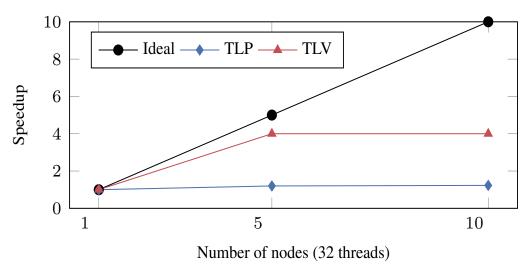
Evaluation - Setup

- · 20 servers: 32 threads @ 2.67 GHz, 256GB RAM
- 10 Gbps network
- 3 algorithms: Frequent Subgraph Mining, Counting Motifs and Clique Finding

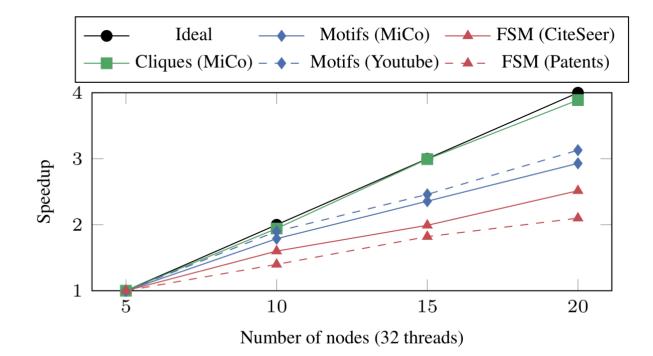
	# Vertices	# Edges	# Labels	Avg. Degree
CiteSeer	3,312	4,732	6	2.8
MiCO	100,000	1,080,298	29	21.6
Patents	2,745,761	13,965,409	37	10
Youtube	4,589,876	43,968,798	80	19
SN	5,022,893	198,613,776	0	79
Instagram	179,527,876	887,390,802	0	9.8

Evaluation - TLP & TLV

- Use case: frequent subgraph mining
- No scalability. Bottlenecks:
 - TLV: Replication of embeddings, hotspots
 - TLP: very few patterns do all the work



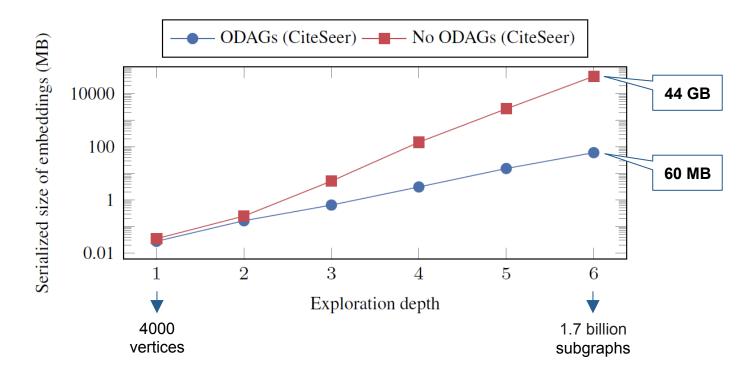
Evaluation - Araquesque Scalability



Evaluation – Arabesque Scalability

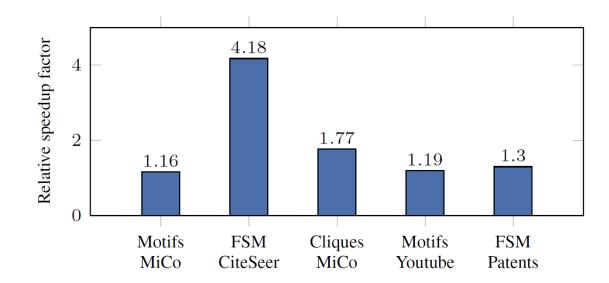
Application - Graph	Centralized	Arabesque - Num. Servers (32 threads)				
	Baseline	1	5	10	15	20
Motifs - MiCo	8,664s	328s	74s	41s	31s	25s
FSM - Citeseer	1,813s	431s	105s	65s	52s	41s
Cliques - MiCo	14,901s) 1,185s	272s	140s	91s	70s
Motifs - Youtube	Fail	8,995s	2,218s	1,167s	900s	709s
FSM - Patents	>19h	548s	186s	132s	102s	88s

Evaluation - ODAGs Compression



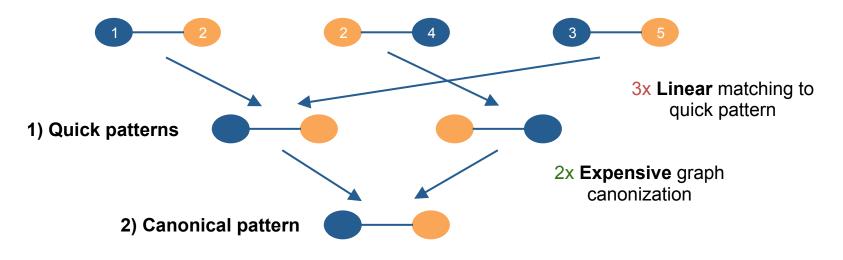
55

Evaluation - Speedup w ODAGs



Efficient Pattern Aggregation

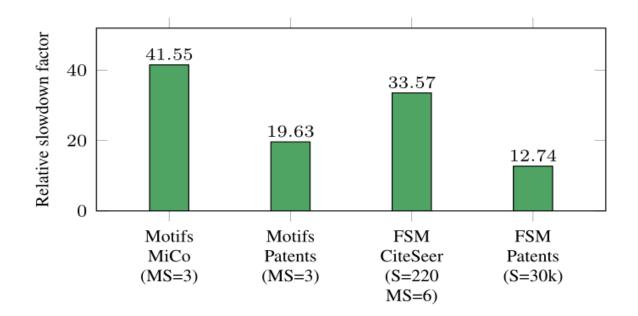
- Solution: 2-level pattern aggregation
 - 1. Embeddings \rightarrow quick patterns
 - 2. Quick patterns \rightarrow canonical pattern



Evaluation - Two-level aggregation

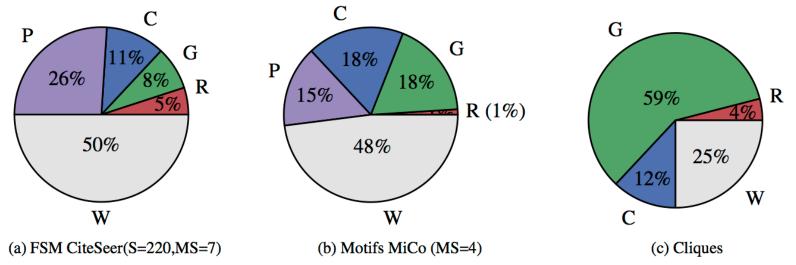
	Motifs MiCo (MS = 4)	Motifs Youtube (MS=4)	FSM CiteSeer (S=220, MS=7)	FSM Patents (S=24k)
Embeddings	10,957,439,024	218,909,854,429	1,680,983,703	1,910,611,704
Quick Patterns	21	21	1433	1800
Canonical Patterns	6	6	97	1348
Reduction Factor	521,782,810x	10,424,278,782x	1,173,052x	1,061,451x

Evaluation - Two-level aggregation



CPU Utilization Breakdown

- Advantages of a simple API
 - Arabesque does all the work (unlike TLV system)
 - Great opportunities for system-level optimizations



P: Pattern Aggregation, C: canonicality checks, G: generate new candidates, R/W: Read/write embeddings 60

Large Graphs

Graph	# Vertices	# Edges	# Labels	Avg. Degree
SN	5,022,893	198,613,776	0	79
Instagram	179,527,876	887,390,802	0	9.8

Application	Time	Embeddings
Motifs-SN (MS=4)	6h 18m	8.4 trillion
Cliques-SN (MS=5)	29m	30 billion
Motifs-Instagram (MS=3)	10h 45m	5 trillion

What's Next?

Future Work

- Better ways to organize intermediate state
 - Scale to larger intermediate states
 - Support for approximate exploration
 - Out-of-core?
- Support for real-time graphs
- Verticals and new applications

Conclusions

- Fundamental trend: democratizing data analytics
- Arabesque: graph mining system
 - Straightforward to code
 - Transparent and scalable distribution
 - High performance
- Only a first step: many opportunities for improvement

Download It, Play with It, Hack It

\left Arabesque

Home User Guide Download About

Distributed Graph Mining Made Easy Documentation How to Use

Distributed Graph Mining Made Easy

Arabesque is a distributed graph mining system that enables quick and easy development of graph mining algorithms, while providing a scalable and efficient implementation that runs on top of Hadoop.

Benefits of Arabesque:

- Simple intuitive API, tuned for Graph Mining Problems
- · Handles all the complexity of Graph Mining Algorithms transparently
- Scalable to hundreds of machines
- Efficient implementation: negligible overhead compared to equivalent centralized solutions
- Support of large graphs with over a billion edges. It can process trillion of subgraphs in a commodity cluster.
- Designed for Hadoop. Runs as an Apache Giraph Job.
- Open-Source with Apache 2.0 license.

Documentation

Check our SOSP 2015 paper that describe the system.

Follow our user-guide, on how to program graph mining applications on Arabesque.

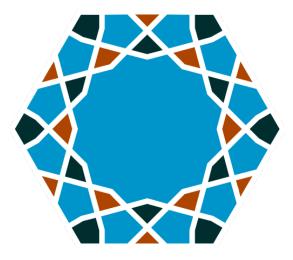
How to Use

Binary jars can be downloaded here.

The source code can be accessed from github.

http://arabesque.io

- Open-source (Apache 2.0)
- Pre-compiled jar
- User guide



Thank you

arabesque.io