Arabesque

A system for distributed graph mining
Mohammed Zaki, RPI

Carlos Teixeira, Alexandre Fonseca, Marco Serafini, Georgos Siganos,
Ashraf Aboulnaga, Qatar Computing Research Institute (QCRI)

Big Data

* Why has data analytics become so hot?
* Physical and digital worlds increasingly intertwined
* More and more digital breadcrumbs
* More and more applications
 Hadoop has made data analytics accessible
* Key drivers in systems research
* Define abstractions that ease development
« Systems that efficiently implement them

itous

iqui

Graphs are Ub

RRARXRRK

Georgos Siganos's Professional Network

as of November 11,2013

Linked([JJ. Morps

2014

ENERO

®2013 LinkedIn - Get your network map at inmaps.linkedinlabs.com

Graph Mining Algorithms

* Finding subgraphs of interest in (labeled) input graphs
« Examples: Clique finding

N
A

» Others: frequent subgraph mining, motifs

Applications

* Web:

« Community detection, link spam detection
« Semantic data:

 Attributed patterns in RDF
* Biology:

* Protein-protein or gene interactions

Some Terminology

—

| |
Input graph Pattern Embeddings

Example: Frequent Graph Mining

Frequent Subgraph Discovery

*Mining frequent subgraphs from a database of many
graphs

-MaX|maI Frequent Subgraphs with minimum support

Frequent Subgraph Discovery

*Mining frequent subgraphs from a single large graph

*Find subgraphs that have a minimum embedding count
:E(;?el,- (IZE)Si)sjoint (3)

*Vertex Disjoint (2)
*NP-Hard to find edge/vertex disjoint from total

Subgraph Mining:
Complete Level-wise Search

2. 8

Minimum Support = 2

«Candidate generation:

add one more edge;
enumerate all extensions
*Support counting: check
which are frequent; retain for

. H A
next iteration frequent Level 1 3 C g 3

Céneidehd Level 2 CM C C C ®» @) o @) @ @&

Taming of the Morphisms

*Challenge of isomorphisms
*How to detect duplicates?
*Graph Isomorphism

*How to count occurrences?
*Subgraph Isomorphism

Candidate Generation

Can be very expensive: potentially millions of isomorphism checks

3 3

|

» © O O
Frequent one-edge pattern, 71

(G'1) (G2) (G'3)

Graph Database, D, 7™ = 2
Graph isomorphism

Support Counting

Graph
Database

Gl
Parent Graph

Subgraph o
Isomorphism 63
testing

Candidate Graph (G)

If frequent

G,
Costly for large datasets, large graphs, small support: potentially
millions of subgraph isomorphism checks

Arabesque for Graph Mining

14

Challenge

« Exponential number of subgraphs/embeddings

unique subgraphs (log-scale)

Size of subgraphs

15

State of the Art: Custom Algorithms

Easy to High Transparent
Code Performance Distribution

Custom
Algorithms

State of the Art: Think Like a Vertex

Easy to Efficient Transparent JEEREEEEOES
. . . . ang w2

Code Implementation Distribution :-:.\’- o
:o“ o ‘.’:

. ISR

P A C H E

|RAPH

Custom / G
Algorithms X X

Think Hike 8 X X v GraphlLab

=HGraph X

17

Arabesque

* New system & execution model
* Purpose-built for graph mining
* New “Think Like an Embedding” model

« Contributions:
« Simple & Generic API
 High performance
« Distributed & Scalable by design

18

Arabesque

Easy to High Transparent

Code Performance Distribution

Custom /
Algorithms X X

Think Like a /
Vertex X X ERNANR

GIRAPH

L] Y |
HSe,

LY e
Arabesque / / / og.:.o

(4
\ P

19

[

PO OVWOoLONOOUIDDWNER

Arabesque API - Clique finding

boolean filter(Embedding e) {

return isClique(e); State of the Art
} (Mace, centralized)
void process(Embedding e) { 4,621 LOC
output(e);

}

boolean isClique(Embedding e) {
return e.getNumEdgesAdded() == e.getNumberOfVertices() - 1;

}

20

[

PO OVWOoLONOOUIDDWNER

Arabesque API - Motif Counting

boolean filter(Embedding e) {

return e.getNumVertices() <= MAX_SIZE; State of the Art
} (GTrieScanner, centralized)

void process(Embedding e) { 3,145 LOC
mapOutput(e.getPattern(), 1);

}

Pair<Pattern, Integer> reduceOutput(Pattern p, List<Integer> counts) {
return new Pair(p, sum(counts));

}

21

Arabesque API - Frequent Subgraph
mining

» Ours was the first distributed implementation
« 280 lines of Java code...

« ... of which 212 compute frequency metric
» Baseline (GRAMI): 5,443 lines of Java

22

Arabesque: An Efficient System

e COST: As efficient as centralized state of the art

Application - Graph

Centralized
Baseline

Arabesque
1 thread

Motifs - MiCo (MS=3) 50s 37s
Cliques - MiCo (MS=4) 281s 385s
FSM - CiteSeer (S=300) 4.8s os

23

Arabesque: A Scalable System

« Scalable to thousands of workers
* Hours/days — Minutes

S . . Arabesque
Application - Graph Centralized Baseline 640 cores

Motifs - MiCo 2 hours 24 minutes 25 seconds

Cliques - MiCo 4 hours 8 minutes 1 minute 10 seconds

FSM - Patents

> 1 day

1 minute 28 seconds

« Can process graphs with almost 1 billion edges

Alternative Paradigms?

25

Think Like a Vertex

 Application = Stateful vertex object
 Vertices sends messages to their neighbors
« Easy to scale to large graphs: partition by vertex

* Bulk Synchronous Programming (BSP)
1. Receive from all neighbors
2. Compute new state
3. Send to all neighbors

26

Example: Shortest Path

 Input: Graph (weighted edges), source vertex
* Output: Min source — vertex distance

1
2
() (=), (OHD) e
<—>
2 / message values = 2 and 4
OO O oy Oy
) ~) message values = 4, 3, and 8
OO O O
4) message values = 6 and 7
®© @ 00 "tk
<—
Complete, no new messages

Example taken from: [McCune et al., arxiv:1507.04405 (2015)]

27

Matrix-Vector Multiplication

» E.g. Page-Rank style computation

sum new state
inputs to neighbors
T

al12 *i2

importance: i2

I
I
I
a13 *i3 |
importance: i3 I
I I
I

superstep i superstep i+1 ! superstep i+2
links to v1 0 al2 al3 i1 a12*i2 +a13*i3
% i2 _
i3
adjacency matrix importance new importance

(transposed)

28

Graph Exploration with TLV

1. Receive embeddings
2. Expand by adding neighboring vertices

3. Send canonical embeddings to their constituting

vertices

Input graph

s o

Superstep 2 for vertex 4

2-4-1

2-4-3

3-4-1 1-4-3

3-4-2 2-4-3
Receive Expand Send

29

Think Like a Pattern

* Many existing algorithms keep state by pattern
« Advantages

* Rebuild embeddings from scratch

* No need to materialize full intermediate state

* |dea of TLP:
 Assign different patterns to different machines
* Avoid storing materialized embedding

30

Arabesque Details

31

How: Arabesque Optimizations

 Avoid Redundant Work

 Efficient canonicality checking

 Embedding Compression
« Overapproximating Directed Acyclic Graphs (ODAGS)

- Efficient Aggregation

« 2-level pattern aggregation

32

Arabesque: Fundamentals

« Subgraphs as 1st class citizens:
« Embedding == Subgraph
 Think Like an Embedding model

Arabesque responsibilities

Graph
Exploration

-

Load Balancing

J

e N
Aggregation
(lIsomorphism)

o J

No redundant
work

User responsibilities

Filter

9 (Automorphism) y

Process

33

Graph Exploration

* Iterative expansion
« Subgraph order n — Subgraph order n + 1

« Connect to neighbours, one vertex at a time.

Input graph

©,
@
©,
©,

Depth 1

9004
L4554

Depth 2

34

Graph Exploration

O|0|0|0

3

©
©,
2

1

©,

Y
(3)
A

O—®

@

‘
(D
Input graph

OlO(0|0

35

Model - Think Like an Embedding

Exploration step 1

Exploration step 2 Exploration step 3

i =i

Input

=1

(=) [E23)

Output

1. Start from a
set of initial
embeddings

@Sk —%"
*O\%O)

Input

/ \

Output Input Output

2. Expand: add
one vertex or edge

Process

1
|
1
1
'ml Discard | ¥a Save
|
1
3. Filter : 4. Produce outputs
uninteresting
candidates

. User-defined functions
36

Guarantee: Completeness

For each e, if Filter(e) == true then Process(e) is executed

Requirement: Anti-monotonicity

Keep expanding

Filter = false

We can prune and be sure that we won’t ignore
desired embeddings

37

Aggregation

« Some applications must aggregate across

embeddings
- E.g., Frequent subgraph mining: Count embeddings with same
pattern

» Aggregation in parallel with exploration step

38

Aggregation

Aggregate across
multiple embeddings

O

readAggregate(k)

map(k, v)

Exploration step i

A Filter -
> ®@— F”?Sr Agg Process Process as
A S : before

m Discard 9 Save

Exploration step i+1

. User-defined functions
39

Previous step

System Architecture

Input
Embeddings
size n

split 1

Worker 1

split 4

split 7

split 2

split 5

split 8

split 3

Output
Embeddings size

n+1

split 1

split 4

split 7

split 2

split 6

split 9

—P | split5

split 8

split 3

split 6

split 9

dajs 1xeN

40

Arabesque API

App -defined functions:
boolean filter(Embedding e)
void process(Embedding e)

boolean aggregationFilter(Embedding e)
void aggregationProcess(Embedding e)

Pair<K,V> reduce(K key, List<V> values)
Pair<K,V> reduceOutput(K key, List<V> values)

Functions provided by Arabesque:
void map(K key, V value)
V readAggregate(K key)

void output(Object value)
void mapOutput(K key, V value)

41

Technical Challenges

42

Avoiding redundant work

* Problem: Automorphic embeddings
« Automorphisms == subgraph equivalences
* Redundant work

Worker 1 Worker 2

43

Avoiding redundant work

« Solution: Decentralized Embedding Canonicality
* No coordination

 Efficient
Worker 1 Worker 2
isCanonical(e) — true isCanonical(e) — false

44

Embedding Canonicality

 isCanonical(e) iff at every step add neighbor with

smallest ID

N
N
N
N
N
N

Initial embedding (e)
e 1-3-6

Expansions:
e 1-3-6-5— canonical
e 1-3-6-4— canonical

e 1-3-6-2—notcanonical (1-2-3-6)

45

Handling Exponential growth

* Goal: handle trillions+ different embeddings?

» Solution: Overapproximating DAGs (ODAGSs)

« Compress into less restrictive superset
» Deal with spurious embeddings

Canonical Embeddings

Input Graph

1 4 2
1 4 3
1 4 5
2 3 4
2 4 5
3 4 5

Embedding List

ODAG

(621 I~ GV TR I \©)

46

Aggregation by Pattern

» Label
» Distinguishable property of a vertex (e.g. color).

« Pattern - “Meta” sub-graph or the template.
» Captures subgraph structure and labelling

« Embedding - Instance of a pattern.
« Actual vertices and edges

N ® ?P®?
® 0006

Input graph Pattern Embeddings

47

Efficient Pattern Aggregation

» Goal: Aggregate automorphic patterns to single key
* Find canonical pattern
* No known polynomial solution

o —© O

\ l /,x Expensive graph
canonization

Canonical .
pattern

48

Efficient Pattern Aggregation

» Solution: 2-level pattern aggregation
1. Embeddings — quick patterns
2. Quick patterns — canonical pattern

\ X 3x Linear matching to
quick pattern
1) Quick patterns ‘7 4‘

/ 2x Expensive graph
canonization
2) Canonical pattern ’7

49

Evaluation

50

Evaluation - Setup

. 20 servers: 32 threads @ 2.67 GHz, 256GB RAM
. 10 Gbps network
. 3 algorithms: Frequent Subgraph Mining, Counting

Motifs and Clique Finding

Vertices # Edges # Labels Avg. Degree
CiteSeer 3,312 4,732 6 2.8
MiCO 100,000 1,080,298 29 21.6
Patents 2,745,761 13,965,409 37 10
Youtube 4,589,876 43,968,798 80 19
SN 5,022,893 198,613,776 0 79
Instagram 179,527,876 887,390,802 0 9.8

51

Evaluation - TLP & TLV

» Use case: frequent subgraph mining
* No scalability. Bottlenecks:
« TLV: Replication of embeddings, hotspots

* TLP: very few patterns do all the work

—@— Ideal —¢— TLP —— TLV

Speedup

S N O
\

Number of nodes (32 threads)

52

Evaluation - Araquesque Scalability

Speedup

+

Ideal

—4— Motifs (MiCo) —a— FSM (CiteSeer)

—m— Cliques (MiCo) - 4 - Motifs (Youtube) — 4 - FSM (Patents)

Number of nodes (32 threads)

53

Evaluation — Arabesque Scalability

Arabesque - Num. Servers

C L Centralized
Application - Graph : (32 threads)
Baseline
5 10 15
Motifs - MiCo 8,664s 328s 74s 41s 31s 25s
FSM - Citeseer 1,813s 431s 105s 65s 52s 41s
Cliques - MiCo 14901s | 1,185s| 272s| 140s| O91s[70s)
Motifs - Youtube Fail 8,995s 2,218s 1,167s 900s 709s
FSM - Patents (>ton) 548s| 186s| 132s| 102s(88s)

Evaluation - ODAGs Compression

Serialized size of embeddings (MB)

10000

100

[S—y

0.01

—@&— ODAGS (CiteSeer) —m— No ODAGs (CiteSeer)

{ I { I {

* Exploration depth *
4000 1.7 billion
vertices subgraphs

44 GB

60 MB

95

Evaluation - Speedup w ODAGs

> 4.18
Q
2 4
(o
=
]
2
% 2 |- 1.77 -
= 1.16 1.19 1.3
<
5
M L
0 -
Motifs FSM Cliques Motifs FSM

MiCo CiteSeer MiCo Youtube Patents

56

Efficient Pattern Aggregation

» Solution: 2-level pattern aggregation
1. Embeddings — quick patterns
2. Quick patterns — canonical pattern

\ X 3x Linear matching to
quick pattern
1) Quick patterns ‘7 4‘

/ 2x Expensive graph
canonization
2) Canonical pattern ’7

Y

Evaluation - Two-level aggregation

Motifs MiCo (MS =

4)

Motifs Youtube (MS=4)

FSM CiteSeer (S=220,

MS=7)

FSM Patents

(S=24kK)

Embeddings 10,957,439,024 218,909,854,429 1,680,983,703 1,910,611,704
Quick Patterns 21 21 1433 1800
Canonical Patterns 6 6 97 1348
Reduction Factor 521,782,810x 10,424,278,782x 1,173,052x 1,061,451x

58

Evaluation - Two-level aggregation

Relative slowdown factor

40

20

41.55
33.57
19.63
12.74
Motifs Motifs FSM FSM
MiCo Patents CiteSeer Patents
(MS=3) (MS=3) (S=220 (S=30k)
MS=6)

59

CPU Utilization Breakdown

« Advantages of a simple API
» Arabesque does all the work (unlike TLV system)

» Great opportunities for system-level optimizations
C

G

G G

R R

R (1%)
v W
\W%
W A% C
(a) FSM CiteSeer(S=220,MS=7) (b) Motifs MiCo (MS=4) (c) Cliques

P: Pattern Aggregation, C: canonicality checks, G: generate new candidates, R/W: Read/write embeddings
60

Large Graphs

Graph # Vertices # Edges # Labels | Avg. Degree
SN 5,022,893 198,613,776 79
Instagram 179,527,876 887,390,802 9.8
Application Time Embeddings
Motifs-SN (MS=4) 6h 18m 8.4 trillion
Cliques-SN (MS=5) 29m 30 billion
Motifs-Instagram (MS=3) 10h 45m 5 trillion

61

What’s Next?

62

Future Work

 Better ways to organize intermediate state
« Scale to larger intermediate states
« Support for approximate exploration
* Qut-of-core?

« Support for real-time graphs

 Verticals and new applications

63

Conclusions

* Fundamental trend: democratizing data analytics

» Arabesque: graph mining system
 Straightforward to code
* Transparent and scalable distribution
* High performance

* Only a first step: many opportunities for improvement

69

Download It, Play with It, Hack It

Home User Guide Download About

vy Distributed Graph Mining Made Easy

Documentation

How to Use Arabesque is a distributed graph mining system that enables quick and easy
development of graph mining algorithms, while providing a scalable and efficient
implementation that runs on top of Hadoop.

Benefits of Arabesque:

Simple intuitive API, tuned for Graph Mining Problems u
Handles all the complexity of Graph Mining Algorithms transparently =
Scalable to hundreds of machines] n
Efficient implementation: negligible overhead compared to equivalent centralized

solutions

Support of large graphs with over a billion edges. It can process trillion of subgraphs in

a commodity cluster.
Designed for Hadoop. Runs as an Apache Giraph Job.

Open-Source with Apache 2.0 license. . O pe n 's o u rce (Apa C h e 2 . 0)
Documentation e Pre-compiled jar
Check our SOSP 2015 paper that describe the system. [) U Se r g u id e

Follow our user-guide, on how to program graph mining applications on Arabesque.

How to Use

Binary jars can be downloaded here.

The source code can be accessed from github.

70

Thank you

arabes

que.io

71

