
Arabesque
A system for distributed graph mining
Mohammed Zaki, RPI

Carlos Teixeira, Alexandre Fonseca, Marco Serafini, Georgos Siganos,
Ashraf Aboulnaga, Qatar Computing Research Institute (QCRI)

1

2

Big Data
•  Why has data analytics become so hot?

•  Physical and digital worlds increasingly intertwined
•  More and more digital breadcrumbs
•  More and more applications
•  Hadoop has made data analytics accessible

•  Key drivers in systems research
•  Define abstractions that ease development
•  Systems that efficiently implement them

2

3 3

Graphs are Ubiquitous

4

Graph Mining Algorithms
•  Finding subgraphs of interest in (labeled) input graphs
•  Examples: Clique finding

4
•  Others: frequent subgraph mining, motifs

5

Applications
•  Web:

•  Community detection, link spam detection
•  Semantic data:

•  Attributed patterns in RDF
•  Biology:

•  Protein-protein or gene interactions

5

6

Some Terminology

6

1

4 3

6 5

1

2

6

1

3

6

4

3

6

4

2

6

2

Input graph Pattern Embeddings

7

Example: Frequent Graph Mining

8

Frequent Subgraph Discovery
• Mining frequent subgraphs from a database of many
graphs

 (G1) (G2) (G3)
• Maximal Frequent Subgraphs with minimum support
(minsup) = 2

A

A B

C D D

A
A

D C C

A

B

D

A

B

D

A

D

A

C

9

Frequent Subgraph Discovery
• Mining frequent subgraphs from a single large graph

• Find subgraphs that have a minimum embedding count
• Total (6)
• Edge Disjoint (3)
• Vertex Disjoint (2)
• NP-Hard to find edge/vertex disjoint from total

A

A B

C D D

A
A

D C C

A

B

D

A

D

A

C

10

Candidate Level 2 Frequent Level 2

Subgraph Mining:
Complete Level-wise Search

• Candidate generation:
add one more edge;
enumerate all extensions
• Support counting: check
which are frequent; retain for
next iteration

A
A B

C DD

A
A

DCC

A

B
D

A
A

A
C

A
D

B
DFrequent Level 1

Minimum Support = 2

A

A
C

A

B
C

A

C
C

A

D
C

A

AC

A

BC

A

CC

A

DC

11

Taming of the Morphisms
• Challenge of isomorphisms
• How to detect duplicates?

• Graph Isomorphism

• How to count occurrences?
• Subgraph Isomorphism

12

Candidate Generation

C

A

A

D

C

A

D

C

A

A C

A

A

D

Graph isomorphism

≅

Can be very expensive: potentially millions of isomorphism checks

13

Support Counting

G1

G2

G3

Gn

Candidate Graph (G)

Subgraph
Isomorphism
 testing

Parent Graph

If frequent

Costly for large datasets, large graphs, small support: potentially
millions of subgraph isomorphism checks

Graph
Database

14

Arabesque for Graph Mining

15

•  Exponential number of subgraphs/embeddings

Challenge

4K
22K

335K

7.8M

117M

1.7B

1 2 3 4 5 6

Size of subgraphs

unique subgraphs (log-scale)

15

16

State of the Art: Custom Algorithms

Easy to
Code

High
Performance

Transparent
Distribution

Custom
Algorithms ✗ ✓ ✗

16

17

State of the Art: Think Like a Vertex

17

Easy to
Code

Efficient
Implementation

Transparent
Distribution

Custom
Algorithms ✗ ✓ ✗

Think Like a
Vertex ✗ ✗ ✓

18

•  New system & execution model
• Purpose-built for graph mining
• New “Think Like an Embedding” model

•  Contributions:

•  Simple & Generic API
•  High performance
•  Distributed & Scalable by design

Arabesque

18

19

Arabesque

Easy to
Code

High
Performance

Transparent
Distribution

Custom
Algorithms ✗ ✓ ✗

Think Like a
Vertex ✗ ✗ ✓

Arabesque ✓ ✓ ✓
19

20

boolean	 filter(Embedding	 e)	 {	
	 	 	 	 return	 isClique(e);	
}	
	
void	 process(Embedding	 e)	 {	
	 	 	 	 output(e);	
}	
	
boolean	 isClique(Embedding	 e)	 {	
	 	 	 	 return	 e.getNumEdgesAdded()	 ==	 e.getNumberOfVertices()	 -‐	 1;	
}	

Arabesque API - Clique finding

20

State of the Art
(Mace, centralized)

4,621 LOC

1	
2	
3	
4	
5	
6	
7	
8	
9	

10	
11	

21

boolean	 filter(Embedding	 e)	 {	
	 	 	 	 return	 e.getNumVertices()	 <=	 MAX_SIZE;	
}	
	
void	 process(Embedding	 e)	 {	
	 	 	 	 mapOutput(e.getPattern(),	 1);	
}	
	
Pair<Pattern,	 Integer>	 reduceOutput(Pattern	 p,	 List<Integer>	 counts)	 {	
	 	 	 	 return	 new	 Pair(p,	 sum(counts));	
}	

Arabesque API - Motif Counting

21

State of the Art
(GTrieScanner, centralized)

3,145 LOC

1	
2	
3	
4	
5	
6	
7	
8	
9	

10	
11	

22

Arabesque API - Frequent Subgraph
mining

•  Ours was the first distributed implementation
•  280 lines of Java code…

•  … of which 212 compute frequency metric
•  Baseline (GRAMI): 5,443 lines of Java

22

23

Arabesque: An Efficient System

Application - Graph Centralized
Baseline

Arabesque
1 thread

Motifs - MiCo (MS=3) 50s 37s

Cliques - MiCo (MS=4) 281s 385s

FSM - CiteSeer (S=300) 4.8s 5s

•  COST: As efficient as centralized state of the art

23

24

Arabesque: A Scalable System
•  Scalable to thousands of workers
•  Hours/days → Minutes

Application - Graph Centralized Baseline Arabesque
640 cores

Motifs - MiCo 2 hours 24 minutes 25 seconds

Cliques - MiCo 4 hours 8 minutes 1 minute 10 seconds

FSM - Patents > 1 day 1 minute 28 seconds

24
•  Can process graphs with almost 1 billion edges

25

Alternative Paradigms?

26

Think Like a Vertex
•  Application = Stateful vertex object
•  Vertices sends messages to their neighbors
•  Easy to scale to large graphs: partition by vertex

•  Bulk Synchronous Programming (BSP)

1.  Receive from all neighbors
2.  Compute new state
3.  Send to all neighbors

26

27

Example: Shortest Path

5

Algorithm 1: Single Source Shortest Path for a Synchronized TLAV Framework
input: A graph (V,E) = G with vertices v 2 V and edges from i! j s.t. eij 2 E,

and starting point vertex vs 2 V

foreach v 2 V do shrtest path lenv 1; /* initialize each vertex data to 1 */
send (0, vs); /* to activate, send msg of 0 to starting point */
repeat /* The outer loop is synchronized with BSP-styled barriers */

for v 2 V do in parallel /* vertices execute in parallel */
/* vertices inactive by default; activated when msg received */
/* compute minimum value received from incoming neighbors */

1 minIncomingData min(receive (path length));
/* set current vertex-data to minimum value */

2 if minIncomingData < shrtest path lenv then
3 shrtest path lenv minIncomingData;
4 foreach evj 2 E do

/* send shortest path + edge weight to outgoing edges */
5 path length shrtest path lenv+weighte;
6 send (path length, j);
7 end
8 end
9 halt ();

end
until no more messages are sent;

1 1

2

02
1

1

4 Superstep 0
message values = 2 and 4

1 2 0 4
Superstep 1

message values = 4, 3, and 8

4 2 0 3
Superstep 2

message values = 6 and 7

4 2 0 3
Superstep 3

Complete, no new messages

FIG. 3: Computing the Single Source Shortest Path in a graph. Dashed lines between supersteps represent
messages (with values listed to the right), and shaded vertices are inactive. Edge weights pictorially included

in first layer for Superstep 0, then subsequently omitted.

tate how computations for a particular topology uti-
lize the underlying hardware.

This section introduces the four principle pillars
of TLAV frameworks. They are:

1. Timing - How user-defined vertex programs
are scheduled for execution

2. Communication - How vertex program data is
made accessible to other vertex programs

3. Execution Model - Implementation of vertex
program execution and flow of data

4. Partitioning - How vertices of the graph, orig-
inally in storage, are divided up to be stored

across memory of the system’s multiple[?]
worker machines

The discussion proceeds as follows: the tim-
ing policy of vertex programs is presented in Sub-
section III A, where system execution can be syn-
chronous, asynchronous, or hybrid. Communica-
tion between vertex programs is presented in Sub-
section III B, where intermediate data is shared pri-
marily through message-passing or shared-memory.
The implementation of vertex program execution is
presented in Subsection III C, which overviews pop-
ular models of program execution and demonstrates
how a particular model implementation impacts ex-

Example taken from: [McCune et al., arxiv:1507.04405 (2015)] 27

•  Input: Graph (weighted edges), source vertex
•  Output: Min source – vertex distance

28

Matrix-Vector Multiplication
•  E.g. Page-Rank style computation

1

2

3

importance: i2

importance: i3

a12 * i2 sum
inputs

a13 * i3

new state
to neighbors

superstep i superstep i+1

…

…

superstep i+2

0 a12 a13

… … …

i1

i2

i3
* =

a12 * i2 + a13 * i3

…

…

links to v1

importance new importance adjacency matrix
(transposed) 28

29

Graph Exploration with TLV
1.  Receive embeddings
2.  Expand by adding neighboring vertices
3.  Send canonical embeddings to their constituting

vertices

29

1

3

4

3
2

Input graph

2

1 1-4

2-4

3-4

3

2

11-4-2
1-4-3

1-4-2

4

1-4-2
1-4-3
2-4-1
2-4-3
3-4-1
3-4-2

1-4-3

Receive Expand Send

Superstep 2 for vertex 4

44 3-4-2

2-4-3

30

Think Like a Pattern
•  Many existing algorithms keep state by pattern
•  Advantages

•  Rebuild embeddings from scratch
•  No need to materialize full intermediate state

•  Idea of TLP:

•  Assign different patterns to different machines
•  Avoid storing materialized embedding

30

31

Arabesque Details

32

•  Avoid Redundant Work
•  Efficient canonicality checking

•  Embedding Compression

•  Overapproximating Directed Acyclic Graphs (ODAGs)

•  Efficient Aggregation
•  2-level pattern aggregation

How: Arabesque Optimizations

32

33

Arabesque: Fundamentals
•  Subgraphs as 1st class citizens:

•  Embedding == Subgraph
•  Think Like an Embedding model

Arabesque responsibilities User responsibilities

Graph
Exploration

Load Balancing

Aggregation
(Isomorphism)

No redundant
work

(Automorphism)

Filter

Process

33

34

Graph Exploration
•  Iterative expansion

•  Subgraph order n → Subgraph order n + 1
•  Connect to neighbours, one vertex at a time.

1

3

2

4

Input graph

1

2

3

4

Depth 1

1 2

1 3

2 1

2 3

2 4

3 1

3 2

3 4

4 2

4 3

Depth 2

34

35

Graph Exploration
1 2 3

1 2 4

1 3 2

1 3 4

4 2 3

4 2 1

4 3 2

4 3 1

2 1 3

2 3 1

2 3 4

2 4 3

3 1 2

3 2 1

3 2 4

3 4 2

Depth 3
1

3

2

4

Input graph

35

36

Model - Think Like an Embedding
1 2

3

1 2
1 3

3 6

1 2

3

1 2
1 3

3 6

1 2

6
4

5 6

Exploration step 1 Exploration step 2 Exploration step 3

Input Output Input Output

1 2

3
1 2

6

1 2

64

1 2

63

Input Output

1 2

1 3

1. Start from a
set of initial
embeddings

1 2

3

1 2

6

2. Expand: add
one vertex or edge

Filter

Discard

false

3. Filter
uninteresting
candidates

Process

Save

4. Produce outputs

true

User-defined functions
36

37

Guarantee: Completeness
For each e, if Filter(e) == true then Process(e) is executed

37

1 2

6

1 2

63

1 2

64

Filter = true

Filter = true

Keep expanding

Filter = false

Filter = false

We can prune and be sure that we won’t ignore
desired embeddings

Requirement: Anti-monotonicity

38

Aggregation
•  Some applications must aggregate across

embeddings
•  E.g., Frequent subgraph mining: Count embeddings with same

pattern

•  Aggregation in parallel with exploration step

38

39

Aggregation

Process
...

map(k, v)
1 3

1 2
Agg
Filter

Save Discard

1 3

1 2

Exploration step i

1

User-defined functions

39

readAggregate(k)

Exploration step i+1

Agg Process
Filter -

Process as
before

Aggregate across
multiple embeddings

40

System Architecture
Input

Embeddings
size n

split 1

split 4

split 7

split 2

split 5

split 8

split 3

split 6

split 9

Worker 2

Worker 1

Worker 3

Output
Embeddings size

n + 1
split 1

split 4

split 7

split 2

split 5

split 8

split 3

split 6

split 9

N
ext step

P
re

vi
ou

s
st

ep

40

41

Arabesque API
•  App-defined functions:

•  boolean	 filter(Embedding	 e)	
•  void	 process(Embedding	 e)	

	
•  boolean	 aggregationFilter(Embedding	 e)	
•  void	 aggregationProcess(Embedding	 e)	

	
•  Pair<K,V>	 reduce(K	 key,	 List<V>	 values)	
•  Pair<K,V>	 reduceOutput(K	 key,	 List<V>	 values)	

•  Functions provided by Arabesque:	

•  void	 map(K	 key,	 V	 value)	
•  V	 readAggregate(K	 key)	

•  void	 output(Object	 value)	
•  void	 mapOutput(K	 key,	 V	 value)	

41

42

Technical Challenges

43

Avoiding redundant work
•  Problem: Automorphic embeddings

•  Automorphisms == subgraph equivalences
•  Redundant work

1 2 3

43

3 2 1

Worker 1 Worker 2

==

44

Avoiding redundant work
•  Solution: Decentralized Embedding Canonicality

•  No coordination
•  Efficient

1 2 3

44

3 2 1

Worker 1 Worker 2

==

isCanonical(e) → true isCanonical(e) → false

45

Embedding Canonicality
•  isCanonical(e) iff at every step add neighbor with

smallest ID

1

2 3

6

4

5

e
Initial embedding (e)
●  1 - 3 - 6

Expansions:
●  1 - 3 - 6 - 5 → canonical
●  1 - 3 - 6 - 4 → canonical

●  1 - 3 - 6 - 2 → not canonical (1 - 2 - 3 - 6)

45

46

Handling Exponential growth
•  Goal: handle trillions+ different embeddings?

•  Solution: Overapproximating DAGs (ODAGs)

•  Compress into less restrictive superset
•  Deal with spurious embeddings

4

1 5

2 3

Canonical Embeddings

1 4 2

1 4 3

1 4 5

2 3 4

2 4 5

3 4 5

Input Graph Embedding List

1

2

3

3

4

2

3

4

5

ODAG
 46

47

Aggregation by Pattern
•  Label

•  Distinguishable property of a vertex (e.g. color).

•  Pattern - “Meta” sub-graph or the template.
•  Captures subgraph structure and labelling

•  Embedding - Instance of a pattern.

•  Actual vertices and edges

1

43

65

1

2

6

1

3

6

4

3

6

4

2

6

2

Input graph Pattern Embeddings 47

48

Efficient Pattern Aggregation
•  Goal: Aggregate automorphic patterns to single key

•  Find canonical pattern
•  No known polynomial solution

1 2 2 4 3 5

3x Expensive graph
canonization

Canonical
pattern

48

49

Efficient Pattern Aggregation
•  Solution: 2-level pattern aggregation

1.  Embeddings → quick patterns
2.  Quick patterns → canonical pattern

1 2 2 4 3 5

3x Linear matching to
quick pattern

2) Canonical pattern

1) Quick patterns

2x Expensive graph
canonization

49

50

Evaluation

51

Evaluation - Setup
•  20 servers: 32 threads @ 2.67 GHz, 256GB RAM
•  10 Gbps network
•  3 algorithms: Frequent Subgraph Mining, Counting

Motifs and Clique Finding

Vertices # Edges # Labels Avg. Degree

CiteSeer 3,312 4,732 6 2.8

MiCO 100,000 1,080,298 29 21.6

Patents 2,745,761 13,965,409 37 10

Youtube 4,589,876 43,968,798 80 19

SN 5,022,893 198,613,776 0 79

Instagram 179,527,876 887,390,802 0 9.8
51

52

Evaluation - TLP & TLV
•  Use case: frequent subgraph mining
•  No scalability. Bottlenecks:

•  TLV: Replication of embeddings, hotspots
•  TLP: very few patterns do all the work

52

total of 32 execution threads at 2.67GHz per core and 256GB
RAM. The servers are connected with a 10 GbE network.
Hadoop 2.6.0 was configured so that each physical server
contains a single worker which can use all 32 execution
threads (unless otherwise stated). Arabesque runs on Giraph
development trunk from January 2015 with added function-
ality for obtaining cluster deployment details and improving
aggregation performance. These modifications amount to 10
extra lines of code.

Vertices Edges Labels Av. Degree
CiteSeer 3,312 4,732 6 2.8
MiCo 100,000 1,080,298 29 21.6
Patents 2,745,761 13,965,409 37 10
Youtube 4,589,876 43,968,798 80 19
SN 5,022,893 198,613,776 0 79
Instagram 179,527,876 887,390,802 0 9.8

Table 1: Graphs used for the evaluation.

Datasets: We use six datasets (see Table 1). CiteSeer [14]
has publications as vertices, with their Computer Science
area as label, and citations as edges. MiCo [14] has authors
as vertices, which are labeled with their field of interest, and
co-authorship of a paper as edges. Patents [18] contains ci-
tation edges between US Patents between January 1963 and
December 1999; the year the patent was granted is consid-
ered to be the label. Youtube [10] lists crawled video ids and
related videos for each video posted from February 2007 to
July 2008. The label is a combination of the video’s rating
and length. SN, is a snapshot of a real world Social Network,
which is not publicly available. Instagram is a snapshot of
the popular photo and video sharing social network collected
by [28]. We consider all the graphs to be undirected. Note
that even if some of these graphs are not very large, the ex-
plosion of the intermediate computation and state required
for graph exploration (see Figure 1) makes them very chal-
lenging for centralized algorithms.
Applications and Parameters: We consider the three appli-
cations discussed in Sections 2, which we label FSM, Motifs
and Cliques. By default, all Motifs executions are run with a
maximum embedding size of 4, denoted as MS=4, whereas
Cliques are run with a maximum embedding size of MS=5.
For FSM, we explicitly state the support, denoted S, used
in each experiment as this parameter is very sensitive to the
properties of the input graph.

6.2 Alternative Paradigms: TLV and TLP
We start by motivating the necessity for a new framework
for distributed graph mining. We evaluate the two alternative
computational paradigms that we discussed in Section 3.2.
Arabesque (i.e., TLE) will be evaluated in the next subsec-
tion. We consider the problem of frequent subgraph mining
(FSM) as a use case. Note that there are currently no dis-

tributed solutions to solve FSM on a single large input graph
in the literature.

1 5 10
0

2

4

6

8

10

Number of nodes (32 threads)

Sp
ee

du
p

Ideal TLP TLV

Figure 7: Scalability Analysis of Alternative Paradigms:
FSM (S=300) on CiteSeer.

The Case of TLV: Our TLV implementation globally
maintains the set of embeddings that have been visited,
much like Arabesque. The implementation adopts the TLV
approach as described in Section 3.2 and uses the same
coordination-free technique as Arabesque to avoid redun-
dant work. The TLV implementation also uses application-
specific approaches to control the expansion process. Our
TLV implementation of FSM uses this feature to follow the
standard depth-first strategy of gSpan [43].

In Figure 7, we show the scalability of FSM with support
300 using the CiteSeer graph. As seen from the figure, TLV
does not scale beyond 5 servers. A major scalability bottle-
neck is that each embedding needs to be replicated to each
vertex that has the necessary local information to expand the
embedding further. In addition, high-degree vertices need to
expand a disproportionate fraction of embeddings. CiteSeer
is a scale-free graph thus affecting the scalability of TLV.

Overall TLV performance is two orders of magnitude
slower compared to Arabesque. TLV requires more than 300
seconds to run FSM on the CiteSeer graph, while Arabesque
requires only 7 seconds for the same setup. The total mes-
sages exchanged for this tiny graph is 120 million, versus
137 thousand messages required by Arabesque. Due to the
hot-spots inherent to the graph structure, or the label distri-
bution, and the extended duplication of state that the TLV
paradigm requires, we conclude that TLV is not suited for
solving these problems.

The Case of TLP: The TLP implementation is based on
GRAMI [14], which represents the state of the art for cen-
tralized FSM. GRAMI keeps state on a per-pattern basis, so
few relatively straightforward changes to the code-base were
sufficient to derive a TLP implementation where patterns are
partitioned across a set of distributed workers.

GRAMI uses a number of optimizations that are specific
to FSM. In particular, it avoids materializing all embeddings
related to a pattern, a common approach for TLP algorithms.
Whenever a new pattern is generated, its instances are re-
calculated on the fly, stopping as soon as a sufficient number
of embeddings to pass the frequency threshold is found.
GRAMI thus solves a simpler problem than the TLV and

53

Evaluation - Araquesque Scalability

53

54

Evaluation – Arabesque Scalability

Application - Graph Centralized
Baseline

Arabesque - Num. Servers
(32 threads)

1 5 10 15 20
Motifs - MiCo 8,664s 328s 74s 41s 31s 25s

FSM - Citeseer 1,813s 431s 105s 65s 52s 41s

Cliques - MiCo 14,901s 1,185s 272s 140s 91s 70s

Motifs - Youtube Fail 8,995s 2,218s 1,167s 900s 709s

FSM - Patents >19h 548s 186s 132s 102s 88s

54

55

Evaluation - ODAGs Compression

55

4000
vertices

1.7 billion
subgraphs

44 GB

60 MB

56

Evaluation - Speedup w ODAGs

56

57

Efficient Pattern Aggregation
•  Solution: 2-level pattern aggregation

1.  Embeddings → quick patterns
2.  Quick patterns → canonical pattern

1 2 2 4 3 5

3x Linear matching to
quick pattern

2) Canonical pattern

1) Quick patterns

2x Expensive graph
canonization

57

58

Evaluation - Two-level aggregation

Motifs MiCo (MS =
4)

Motifs Youtube (MS=4) FSM CiteSeer (S=220,
MS=7)

FSM Patents
(S=24k)

Embeddings 10,957,439,024 218,909,854,429 1,680,983,703 1,910,611,704

Quick Patterns 21 21 1433 1800

Canonical Patterns 6 6 97 1348

Reduction Factor 521,782,810x 10,424,278,782x 1,173,052x 1,061,451x

58

59

Evaluation - Two-level aggregation

59

60

CPU Utilization Breakdown

60

•  Advantages of a simple API
•  Arabesque does all the work (unlike TLV system)
•  Great opportunities for system-level optimizations

P: Pattern Aggregation, C: canonicality checks, G: generate new candidates, R/W: Read/write embeddings

61

Large Graphs

Graph # Vertices # Edges # Labels Avg. Degree
SN 5,022,893 198,613,776 0 79

Instagram 179,527,876 887,390,802 0 9.8

Application Time Embeddings
Motifs-SN (MS=4) 6h 18m 8.4 trillion

Cliques-SN (MS=5) 29m 30 billion

Motifs-Instagram (MS=3) 10h 45m 5 trillion

61

62

What’s Next?

63

Future Work
•  Better ways to organize intermediate state

•  Scale to larger intermediate states
•  Support for approximate exploration
•  Out-of-core?

•  Support for real-time graphs
•  Verticals and new applications

63

69

Conclusions
•  Fundamental trend: democratizing data analytics

•  Arabesque: graph mining system

•  Straightforward to code
•  Transparent and scalable distribution
•  High performance

•  Only a first step: many opportunities for improvement

69

70

Download It, Play with It, Hack It

70

http://arabesque.io

●  Open-source (Apache 2.0)
●  Pre-compiled jar
●  User guide

Thank you
arabesque.io

71

