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Big Data

* Why has data analytics become so hot?
* Physical and digital worlds increasingly intertwined
* More and more digital breadcrumbs
* More and more applications
 Hadoop has made data analytics accessible
* Key drivers in systems research
* Define abstractions that ease development
« Systems that efficiently implement them
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Graph Mining Algorithms

* Finding subgraphs of interest in (labeled) input graphs
« Examples: Clique finding

N
A

» Others: frequent subgraph mining, motifs



Applications

* Web:

« Community detection, link spam detection
« Semantic data:

 Attributed patterns in RDF
* Biology:

* Protein-protein or gene interactions



Some Terminology
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Input graph Pattern Embeddings



Example: Frequent Graph Mining



Frequent Subgraph Discovery

*Mining frequent subgraphs from a database of many
graphs

-MaX|maI Frequent Subgraphs with minimum support




Frequent Subgraph Discovery

*Mining frequent subgraphs from a single large graph

*Find subgraphs that have a minimum embedding count
:E(;?el,- (IZE)Si)sjoint (3)

*Vertex Disjoint (2)
*NP-Hard to find edge/vertex disjoint from total



Subgraph Mining:
Complete Level-wise Search

2. 8

Minimum Support = 2

«Candidate generation:

add one more edge;
enumerate all extensions
*Support counting: check
which are frequent; retain for

. H A
next iteration frequent Level 1 3 C g 3
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Taming of the Morphisms

*Challenge of isomorphisms
*How to detect duplicates?
*Graph Isomorphism

*How to count occurrences?
*Subgraph Isomorphism




Candidate Generation

Can be very expensive: potentially millions of isomorphism checks

3 3

|

» © O O
Frequent one-edge pattern, 71

(G'1) (G2) (G'3)

Graph Database, D, 7™ = 2
Graph isomorphism



Support Counting

Graph
Database

Gl
Parent Graph

Subgraph o
Isomorphism 63
testing

Candidate Graph (G)

If frequent

G,
Costly for large datasets, large graphs, small support: potentially
millions of subgraph isomorphism checks



Arabesque for Graph Mining
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Challenge

« Exponential number of subgraphs/embeddings

# unique subgraphs (log-scale)

Size of subgraphs
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State of the Art: Custom Algorithms

Easy to High Transparent
Code Performance Distribution

Custom
Algorithms




State of the Art: Think Like a Vertex

Easy to Efficient Transparent JEEREEEEOES
. . . . ang w2

Code Implementation Distribution :-:.\’- o
:o“ o ‘.’:
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Arabesque

* New system & execution model
* Purpose-built for graph mining
* New “Think Like an Embedding” model

« Contributions:
« Simple & Generic API
 High performance
« Distributed & Scalable by design
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Arabesque

Easy to High Transparent

Code Performance Distribution

Custom /
Algorithms X X

Think Like a /
Vertex X X ERNANR
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Arabesque API - Clique finding

boolean filter(Embedding e) {

return isClique(e); State of the Art
} (Mace, centralized)
void process(Embedding e) { 4,621 LOC
output(e);

}

boolean isClique(Embedding e) {
return e.getNumEdgesAdded() == e.getNumberOfVertices() - 1;

}
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Arabesque API - Motif Counting

boolean filter(Embedding e) {

return e.getNumVertices() <= MAX_SIZE; State of the Art
} (GTrieScanner, centralized)

void process(Embedding e) { 3,145 LOC
mapOutput(e.getPattern(), 1);

}

Pair<Pattern, Integer> reduceOutput(Pattern p, List<Integer> counts) {
return new Pair(p, sum(counts));

}
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Arabesque API - Frequent Subgraph
mining

» Ours was the first distributed implementation
« 280 lines of Java code...

« ... of which 212 compute frequency metric
» Baseline (GRAMI): 5,443 lines of Java
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Arabesque: An Efficient System

e COST: As efficient as centralized state of the art

Application - Graph

Centralized
Baseline

Arabesque
1 thread

Motifs - MiCo (MS=3) 50s 37s
Cliques - MiCo (MS=4) 281s 385s
FSM - CiteSeer (S=300) 4.8s os
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Arabesque: A Scalable System

« Scalable to thousands of workers
* Hours/days — Minutes

S . . Arabesque
Application - Graph Centralized Baseline 640 cores

Motifs - MiCo 2 hours 24 minutes 25 seconds

Cliques - MiCo 4 hours 8 minutes 1 minute 10 seconds

FSM - Patents

> 1 day

1 minute 28 seconds

« Can process graphs with almost 1 billion edges




Alternative Paradigms?
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Think Like a Vertex

 Application = Stateful vertex object
 Vertices sends messages to their neighbors
« Easy to scale to large graphs: partition by vertex

* Bulk Synchronous Programming (BSP)
1. Receive from all neighbors
2. Compute new state
3. Send to all neighbors

26



Example: Shortest Path

 Input: Graph (weighted edges), source vertex
* Output: Min source — vertex distance

1
2
() (=), (OHD) e
<—>
2 / message values = 2 and 4
OO O oy Oy
) ~ ) message values = 4, 3, and 8
OO O O
4 ) message values = 6 and 7
®© @ 00 "tk
<—
Complete, no new messages

Example taken from: [McCune et al., arxiv:1507.04405 (2015)]
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Matrix-Vector Multiplication

» E.g. Page-Rank style computation

sum new state
inputs to neighbors
T

al12 *i2

importance: i2

I
I
I
a13 *i3 |
importance: i3 I
I I
I

superstep i superstep i+1 ! superstep i+2
links to v1 0 al2 al3 i1 a12*i2 +a13*i3
% i2 _
i3
adjacency matrix importance new importance

(transposed)
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Graph Exploration with TLV

1. Receive embeddings
2. Expand by adding neighboring vertices

3. Send canonical embeddings to their constituting

vertices

Input graph

s o

Superstep 2 for vertex 4

2-4-1

2-4-3

3-4-1 1-4-3

3-4-2 2-4-3
Receive Expand Send
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Think Like a Pattern

* Many existing algorithms keep state by pattern
« Advantages

* Rebuild embeddings from scratch

* No need to materialize full intermediate state

* |dea of TLP:
 Assign different patterns to different machines
* Avoid storing materialized embedding

30



Arabesque Details
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How: Arabesque Optimizations

 Avoid Redundant Work

 Efficient canonicality checking

 Embedding Compression
« Overapproximating Directed Acyclic Graphs (ODAGS)

- Efficient Aggregation

« 2-level pattern aggregation
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Arabesque: Fundamentals

« Subgraphs as 1st class citizens:
« Embedding == Subgraph
 Think Like an Embedding model

Arabesque responsibilities

Graph
Exploration

-

Load Balancing

J

e N
Aggregation
(lIsomorphism)

o J

No redundant
work

User responsibilities

Filter

9 (Automorphism) y

Process
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Graph Exploration

* Iterative expansion
« Subgraph order n — Subgraph order n + 1

« Connect to neighbours, one vertex at a time.

Input graph

©,
@
©,
©,

Depth 1

9004
L4554

Depth 2
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Graph Exploration
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Model - Think Like an Embedding

Exploration step 1

Exploration step 2 Exploration step 3

i =i

Input

=1

(=) [E23)

Output

1. Start from a
set of initial
embeddings

@Sk —%"
*O\%O )

Input

/ \

Output Input Output

2. Expand: add
one vertex or edge

Process

1
|
1
1
'ml Discard | ¥a Save
|
1
3. Filter : 4. Produce outputs
uninteresting
candidates

. User-defined functions
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Guarantee: Completeness

For each e, if Filter(e) == true then Process(e) is executed

Requirement: Anti-monotonicity

Keep expanding

Filter = false

We can prune and be sure that we won’t ignore
desired embeddings
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Aggregation

« Some applications must aggregate across

embeddings
- E.g., Frequent subgraph mining: Count embeddings with same
pattern

» Aggregation in parallel with exploration step

38



Aggregation

Aggregate across
multiple embeddings

O

readAggregate(k)

map(k, v)

Exploration step i

A Filter -
> ®@— F”?Sr Agg Process Process as
A S : before

m Discard 9 Save

Exploration step i+1

. User-defined functions
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Previous step

System Architecture

Input
Embeddings
size n

split 1

Worker 1

split 4

split 7

split 2

split 5

split 8

split 3

Output
Embeddings size

n+1

split 1

split 4

split 7

split 2

split 6

split 9

—P | split5

split 8

split 3

split 6

split 9

dajs 1xeN
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Arabesque API

App -defined functions:
boolean filter(Embedding e)
void process(Embedding e)

boolean aggregationFilter(Embedding e)
void aggregationProcess(Embedding e)

Pair<K,V> reduce(K key, List<V> values)
Pair<K,V> reduceOutput(K key, List<V> values)

Functions provided by Arabesque:
void map(K key, V value)
V readAggregate(K key)

void output(Object value)
void mapOutput(K key, V value)
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Technical Challenges

42



Avoiding redundant work

* Problem: Automorphic embeddings
« Automorphisms == subgraph equivalences
* Redundant work

Worker 1 Worker 2
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Avoiding redundant work

« Solution: Decentralized Embedding Canonicality
* No coordination

 Efficient
Worker 1 Worker 2
isCanonical(e) — true isCanonical(e) — false
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Embedding Canonicality

 isCanonical(e) iff at every step add neighbor with

smallest ID

N
N
N
N
N
N

Initial embedding (e)
e 1-3-6

Expansions:
e 1-3-6-5— canonical
e 1-3-6-4— canonical

e 1-3-6-2—notcanonical (1-2-3-6)
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Handling Exponential growth

* Goal: handle trillions+ different embeddings?

» Solution: Overapproximating DAGs (ODAGSs)

« Compress into less restrictive superset
» Deal with spurious embeddings

Canonical Embeddings

Input Graph

1 4 2
1 4 3
1 4 5
2 3 4
2 4 5
3 4 5

Embedding List

ODAG

(621 I~ GV TR I \©)
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Aggregation by Pattern

» Label
» Distinguishable property of a vertex (e.g. color).

« Pattern - “Meta” sub-graph or the template.
» Captures subgraph structure and labelling

« Embedding - Instance of a pattern.
« Actual vertices and edges

N ® ?P®?
® 0006

Input graph Pattern Embeddings
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Efficient Pattern Aggregation

» Goal: Aggregate automorphic patterns to single key
* Find canonical pattern
* No known polynomial solution

o —© O

\ l /,x Expensive graph
canonization

Canonical .
pattern
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Efficient Pattern Aggregation

» Solution: 2-level pattern aggregation
1. Embeddings — quick patterns
2. Quick patterns — canonical pattern

\ X 3x Linear matching to
quick pattern
1) Quick patterns ‘7 4‘

/ 2x Expensive graph
canonization
2) Canonical pattern ’7
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Evaluation
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Evaluation - Setup

. 20 servers: 32 threads @ 2.67 GHz, 256GB RAM
. 10 Gbps network
. 3 algorithms: Frequent Subgraph Mining, Counting

Motifs and Clique Finding

# Vertices # Edges # Labels Avg. Degree
CiteSeer 3,312 4,732 6 2.8
MiCO 100,000 1,080,298 29 21.6
Patents 2,745,761 13,965,409 37 10
Youtube 4,589,876 43,968,798 80 19
SN 5,022,893 198,613,776 0 79
Instagram 179,527,876 887,390,802 0 9.8

51



Evaluation - TLP & TLV

» Use case: frequent subgraph mining
* No scalability. Bottlenecks:
« TLV: Replication of embeddings, hotspots

* TLP: very few patterns do all the work

—@— Ideal —¢— TLP —— TLV

Speedup

S N O
\

Number of nodes (32 threads)
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Evaluation - Araquesque Scalability

Speedup

+

Ideal

—4— Motifs (MiCo) —a— FSM (CiteSeer)

—m— Cliques (MiCo) - 4 - Motifs (Youtube) — 4 - FSM (Patents)

Number of nodes (32 threads)
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Evaluation — Arabesque Scalability

Arabesque - Num. Servers

C L Centralized
Application - Graph : (32 threads)
Baseline
5 10 15
Motifs - MiCo 8,664s 328s 74s 41s 31s 25s
FSM - Citeseer 1,813s 431s 105s 65s 52s 41s
Cliques - MiCo 14901s | 1,185s| 272s| 140s| O91s[ 70s)
Motifs - Youtube Fail 8,995s 2,218s 1,167s 900s 709s
FSM - Patents (>ton) 548s| 186s| 132s| 102s( 88s)




Evaluation - ODAGs Compression

Serialized size of embeddings (MB)

10000

100

[S—y

0.01

—@&— ODAGS (CiteSeer) —m— No ODAGs (CiteSeer)

{ I { I {

* Exploration depth *
4000 1.7 billion
vertices subgraphs

44 GB

60 MB

95



Evaluation - Speedup w ODAGs

> 4.18
Q
2 4
(o
=
]
2
% 2 |- 1.77 -
= 1.16 1.19 1.3
<
5
M L
0 -
Motifs FSM Cliques Motifs FSM

MiCo CiteSeer MiCo Youtube Patents

56



Efficient Pattern Aggregation

» Solution: 2-level pattern aggregation
1. Embeddings — quick patterns
2. Quick patterns — canonical pattern

\ X 3x Linear matching to
quick pattern
1) Quick patterns ‘7 4‘

/ 2x Expensive graph
canonization
2) Canonical pattern ’7

Y



Evaluation - Two-level aggregation

Motifs MiCo (MS =

4)

Motifs Youtube (MS=4)

FSM CiteSeer (S=220,

MS=7)

FSM Patents

(S=24kK)

Embeddings 10,957,439,024 218,909,854,429 1,680,983,703 1,910,611,704
Quick Patterns 21 21 1433 1800
Canonical Patterns 6 6 97 1348
Reduction Factor 521,782,810x 10,424,278,782x 1,173,052x 1,061,451x
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Evaluation - Two-level aggregation

Relative slowdown factor

40

20

41.55
33.57
19.63
12.74
Motifs Motifs FSM FSM
MiCo Patents CiteSeer Patents
(MS=3) (MS=3) (S=220 (S=30k)
MS=6)
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CPU Utilization Breakdown

« Advantages of a simple API
» Arabesque does all the work (unlike TLV system)

» Great opportunities for system-level optimizations
C

G

G G

R R

R (1%)
v W
\W%
W A% C
(a) FSM CiteSeer(S=220,MS=7) (b) Motifs MiCo (MS=4) (c) Cliques

P: Pattern Aggregation, C: canonicality checks, G: generate new candidates, R/W: Read/write embeddings
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Large Graphs

Graph # Vertices # Edges # Labels | Avg. Degree
SN 5,022,893 198,613,776 79
Instagram 179,527,876 887,390,802 9.8
Application Time Embeddings
Motifs-SN (MS=4) 6h 18m 8.4 trillion
Cliques-SN (MS=5) 29m 30 billion
Motifs-Instagram (MS=3) 10h 45m 5 trillion
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What’s Next?
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Future Work

 Better ways to organize intermediate state
« Scale to larger intermediate states
« Support for approximate exploration
* Qut-of-core?

« Support for real-time graphs

 Verticals and new applications

63



Conclusions

* Fundamental trend: democratizing data analytics

» Arabesque: graph mining system
 Straightforward to code
* Transparent and scalable distribution
* High performance

* Only a first step: many opportunities for improvement
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Download It, Play with It, Hack It

Home User Guide Download About

vy Distributed Graph Mining Made Easy

Documentation

How to Use Arabesque is a distributed graph mining system that enables quick and easy
development of graph mining algorithms, while providing a scalable and efficient
implementation that runs on top of Hadoop.

Benefits of Arabesque:

Simple intuitive API, tuned for Graph Mining Problems u
Handles all the complexity of Graph Mining Algorithms transparently =
Scalable to hundreds of machines ] n
Efficient implementation: negligible overhead compared to equivalent centralized

solutions

Support of large graphs with over a billion edges. It can process trillion of subgraphs in

a commodity cluster.
Designed for Hadoop. Runs as an Apache Giraph Job.

Open-Source with Apache 2.0 license. . O pe n 's o u rce (Apa C h e 2 . 0)
Documentation e Pre-compiled jar
Check our SOSP 2015 paper that describe the system. [ ) U Se r g u id e

Follow our user-guide, on how to program graph mining applications on Arabesque.

How to Use

Binary jars can be downloaded here.

The source code can be accessed from github.
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Thank you

arabes

que.io
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