
Arabesque 
A system for distributed graph mining 
Mohammed Zaki, RPI 
 
Carlos Teixeira, Alexandre Fonseca, Marco Serafini, Georgos Siganos, 
Ashraf Aboulnaga, Qatar Computing Research Institute (QCRI) 

1 



2 

Big Data  
•  Why has data analytics become so hot?  

•  Physical and digital worlds increasingly intertwined  
•  More and more digital breadcrumbs 
•  More and more applications 
•  Hadoop has made data analytics accessible 

•  Key drivers in systems research 
•  Define abstractions that ease development 
•  Systems that efficiently implement them 
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Graphs are Ubiquitous 
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Graph Mining Algorithms 
•  Finding subgraphs of interest in (labeled) input graphs 
•  Examples: Clique finding 

4 
•  Others: frequent subgraph mining, motifs 
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Applications 
•  Web:  

•  Community detection, link spam detection 
•  Semantic data:  

•  Attributed patterns in RDF 
•  Biology:  

•  Protein-protein or gene interactions 
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Some Terminology 
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Example: Frequent Graph Mining 
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Frequent Subgraph Discovery 
• Mining frequent subgraphs from a database of many 
graphs 

 
 

           (G1)            (G2)       (G3) 
• Maximal Frequent Subgraphs with minimum support 
(minsup) = 2 
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Frequent Subgraph Discovery 
• Mining frequent subgraphs from a single large graph 

 
 

 

• Find subgraphs that have a minimum embedding count 
• Total (6) 
• Edge Disjoint  (3) 
• Vertex Disjoint (2) 
• NP-Hard to find edge/vertex disjoint from total 
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Candidate Level 2 Frequent Level 2 

Subgraph Mining: 
Complete Level-wise Search 

• Candidate generation: 
add one more edge; 
enumerate all extensions 
• Support counting: check 
which are frequent; retain for 
next iteration 
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Taming of the Morphisms 
• Challenge of isomorphisms 
• How to detect duplicates? 

• Graph Isomorphism 

• How to count occurrences? 
• Subgraph Isomorphism 
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Candidate Generation 
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Support Counting 

G1 

G2 

G3 

Gn 

Candidate Graph (G) 

Subgraph 
Isomorphism 
 testing 

Parent Graph 

If frequent 

Costly  for large datasets, large graphs, small support: potentially 
millions of subgraph isomorphism checks 

Graph 
Database 



14 

Arabesque for Graph Mining 
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•  Exponential number of subgraphs/embeddings 

Challenge 

4K 
22K 

335K 

7.8M 

117M 

1.7B 

1 2 3 4 5 6 

Size of subgraphs 

# unique subgraphs (log-scale) 
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State of the Art: Custom Algorithms 

Easy to 
Code 

High 
Performance 

Transparent 
Distribution 

Custom 
Algorithms ✗ ✓ ✗ 
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State of the Art: Think Like a Vertex 
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Easy to 
Code 

Efficient 
Implementation 

Transparent 
Distribution 

Custom 
Algorithms ✗ ✓ ✗ 

Think Like a 
Vertex ✗ ✗ ✓ 
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•  New system & execution model 
• Purpose-built for graph mining 
• New “Think Like an Embedding” model 

 
•  Contributions: 

•  Simple & Generic API 
•  High performance 
•  Distributed & Scalable by design 

Arabesque 
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Arabesque 

Easy to 
Code 

High 
Performance 

Transparent 
Distribution 

Custom 
Algorithms ✗ ✓ ✗ 

Think Like a 
Vertex ✗ ✗ ✓ 

Arabesque ✓ ✓ ✓ 
19 
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boolean	  filter(Embedding	  e)	  {	  
	  	  	  	  return	  isClique(e);	  
}	  
	  
void	  process(Embedding	  e)	  {	  
	  	  	  	  output(e);	  
}	  
	  
boolean	  isClique(Embedding	  e)	  {	  
	  	  	  	  return	  e.getNumEdgesAdded()	  ==	  e.getNumberOfVertices()	  -‐	  1;	  
}	  

Arabesque API - Clique finding 
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State of the Art  
(Mace, centralized) 

 
4,621 LOC 
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boolean	  filter(Embedding	  e)	  {	  
	  	  	  	  return	  e.getNumVertices()	  <=	  MAX_SIZE;	  
}	  
	  
void	  process(Embedding	  e)	  {	  
	  	  	  	  mapOutput(e.getPattern(),	  1);	  
}	  
	  
Pair<Pattern,	  Integer>	  reduceOutput(Pattern	  p,	  List<Integer>	  counts)	  {	  
	  	  	  	  return	  new	  Pair(p,	  sum(counts));	  
}	  

Arabesque API - Motif Counting 

21 

State of the Art  
(GTrieScanner, centralized) 

 
3,145 LOC 
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Arabesque API - Frequent Subgraph 
mining 

•  Ours was the first distributed implementation 
•  280 lines of Java code… 

•  … of which 212 compute frequency metric  
•  Baseline (GRAMI): 5,443 lines of Java 
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Arabesque: An Efficient System 

Application - Graph Centralized 
Baseline 

Arabesque 
1 thread 

Motifs - MiCo (MS=3) 50s 37s 

Cliques - MiCo (MS=4) 281s 385s 

FSM - CiteSeer (S=300) 4.8s 5s 

•  COST: As efficient as centralized state of the art 
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Arabesque: A Scalable System 
•  Scalable to thousands of workers 
•  Hours/days → Minutes 

Application - Graph Centralized Baseline Arabesque  
640 cores 

Motifs - MiCo 2 hours 24 minutes 25 seconds 

Cliques - MiCo 4 hours 8 minutes 1 minute 10 seconds 

FSM - Patents > 1 day 1 minute 28 seconds 

24 
•  Can process graphs with almost 1 billion edges 
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Alternative Paradigms? 



26 

Think Like a Vertex 
•  Application = Stateful vertex object 
•  Vertices sends messages to their neighbors 
•  Easy to scale to large graphs: partition by vertex 
  
•  Bulk Synchronous Programming (BSP) 

1.  Receive from all neighbors 
2.  Compute new state 
3.  Send to all neighbors 
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Example: Shortest Path 

5

Algorithm 1: Single Source Shortest Path for a Synchronized TLAV Framework
input: A graph (V,E) = G with vertices v 2 V and edges from i! j s.t. eij 2 E,

and starting point vertex vs 2 V

foreach v 2 V do shrtest path lenv  1; /* initialize each vertex data to 1 */
send (0, vs); /* to activate, send msg of 0 to starting point */
repeat /* The outer loop is synchronized with BSP-styled barriers */

for v 2 V do in parallel /* vertices execute in parallel */
/* vertices inactive by default; activated when msg received */
/* compute minimum value received from incoming neighbors */

1 minIncomingData min(receive (path length));
/* set current vertex-data to minimum value */

2 if minIncomingData < shrtest path lenv then
3 shrtest path lenv  minIncomingData;
4 foreach evj 2 E do

/* send shortest path + edge weight to outgoing edges */
5 path length shrtest path lenv+weighte;
6 send (path length, j);
7 end
8 end
9 halt ();

end
until no more messages are sent;

1 1

2

02
1

1

4 Superstep 0
message values = 2 and 4

1 2 0 4
Superstep 1

message values = 4, 3, and 8

4 2 0 3
Superstep 2

message values = 6 and 7

4 2 0 3
Superstep 3

Complete, no new messages

FIG. 3: Computing the Single Source Shortest Path in a graph. Dashed lines between supersteps represent
messages (with values listed to the right), and shaded vertices are inactive. Edge weights pictorially included

in first layer for Superstep 0, then subsequently omitted.

tate how computations for a particular topology uti-
lize the underlying hardware.

This section introduces the four principle pillars
of TLAV frameworks. They are:

1. Timing - How user-defined vertex programs
are scheduled for execution

2. Communication - How vertex program data is
made accessible to other vertex programs

3. Execution Model - Implementation of vertex
program execution and flow of data

4. Partitioning - How vertices of the graph, orig-
inally in storage, are divided up to be stored

across memory of the system’s multiple[? ]
worker machines

The discussion proceeds as follows: the tim-
ing policy of vertex programs is presented in Sub-
section III A, where system execution can be syn-
chronous, asynchronous, or hybrid. Communica-
tion between vertex programs is presented in Sub-
section III B, where intermediate data is shared pri-
marily through message-passing or shared-memory.
The implementation of vertex program execution is
presented in Subsection III C, which overviews pop-
ular models of program execution and demonstrates
how a particular model implementation impacts ex-

Example taken from: [McCune et al., arxiv:1507.04405 (2015)] 27 

•  Input: Graph (weighted edges), source vertex 
•  Output: Min source – vertex distance 
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Matrix-Vector Multiplication 
•  E.g. Page-Rank style computation 
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Graph Exploration with TLV 
1.  Receive embeddings 
2.  Expand by adding neighboring vertices 
3.  Send canonical embeddings to their constituting 

vertices 
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Think Like a Pattern 
•  Many existing algorithms keep state by pattern 
•  Advantages 

•  Rebuild embeddings from scratch 
•  No need to materialize full intermediate state 

 
•  Idea of TLP: 

•  Assign different patterns to different machines 
•  Avoid storing materialized embedding 

30 
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Arabesque Details 
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•  Avoid Redundant Work 
•  Efficient canonicality checking 

 
•  Embedding Compression 

•  Overapproximating Directed Acyclic Graphs (ODAGs) 
 

•  Efficient Aggregation 
•  2-level pattern aggregation 

How: Arabesque Optimizations 

32 
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Arabesque: Fundamentals 
•  Subgraphs as 1st class citizens: 

•  Embedding == Subgraph 
•  Think Like an Embedding model 

 
Arabesque responsibilities User responsibilities 

Graph 
Exploration 

Load Balancing 

Aggregation 
(Isomorphism) 

No redundant 
work 

(Automorphism) 

Filter 

Process 
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Graph Exploration 
•  Iterative expansion 

•  Subgraph order n → Subgraph order n + 1 
•  Connect to neighbours, one vertex at a time. 
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Graph Exploration 
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Model - Think Like an Embedding 
1 2
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1 3
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2. Expand: add 
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Discard 
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Save 

4. Produce outputs 

true 

User-defined functions 
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Guarantee: Completeness 
For each e, if Filter(e) == true then Process(e) is executed 
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Keep expanding 
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Filter = false 

We can prune and be sure that we won’t ignore 
desired embeddings 
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Aggregation 
•  Some applications must aggregate across 

embeddings 
•  E.g., Frequent subgraph mining: Count embeddings with same 

pattern 
 

•  Aggregation in parallel with exploration step 

38 
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Aggregation 

Process 
... 

map(k, v) 
1 3

1 2
Agg 
Filter 

Save Discard 

1 3

1 2

Exploration step i 

1

User-defined functions 
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readAggregate(k) 

Exploration step i+1 

Agg Process 
Filter - 

Process as 
before 

Aggregate across 
multiple embeddings 
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System Architecture 
Input 
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size n 
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Arabesque API 
•  App-defined functions: 

•  boolean	  filter(Embedding	  e)	  
•  void	  process(Embedding	  e)	  

	  
•  boolean	  aggregationFilter(Embedding	  e)	  
•  void	  aggregationProcess(Embedding	  e)	  

	  
•  Pair<K,V>	  reduce(K	  key,	  List<V>	  values)	  
•  Pair<K,V>	  reduceOutput(K	  key,	  List<V>	  values)	  

 
•  Functions provided by Arabesque:	  

•  void	  map(K	  key,	  V	  value)	  
•  V	  readAggregate(K	  key)	  

 
•  void	  output(Object	  value)	  
•  void	  mapOutput(K	  key,	  V	  value)	  
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Technical Challenges 
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Avoiding redundant work 
•  Problem: Automorphic embeddings 

•  Automorphisms == subgraph equivalences 
•  Redundant work  

1 2 3 

43 

3 2 1 

Worker 1 Worker 2 

== 
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Avoiding redundant work 
•  Solution: Decentralized Embedding Canonicality  

•  No coordination  
•  Efficient  

1 2 3 

44 

3 2 1 

Worker 1 Worker 2 

== 

isCanonical(e) → true isCanonical(e) → false 
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Embedding Canonicality 
•  isCanonical(e) iff at every step add neighbor with 

smallest ID 

1

2 3

6

4

5

e 
Initial embedding (e) 
●  1 - 3 - 6 

 
Expansions: 
●  1 - 3 - 6 - 5 → canonical 
●  1 - 3 - 6 - 4 → canonical 

 
●  1 - 3 - 6 - 2 → not canonical (1 - 2 - 3 - 6) 

45 
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Handling Exponential growth 
•  Goal: handle trillions+ different embeddings? 

 
•  Solution: Overapproximating DAGs (ODAGs) 

•  Compress into less restrictive superset 
•  Deal with spurious embeddings  

4

1 5

2 3

Canonical Embeddings 

1 4 2 

1 4 3 

1 4 5 

2 3 4 

2 4 5 

3 4 5 

Input Graph Embedding List 
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Aggregation by Pattern 
•  Label 

•  Distinguishable property of a vertex (e.g. color). 
 

•  Pattern - “Meta” sub-graph or the template. 
•  Captures subgraph structure and labelling 

 
•  Embedding - Instance of a pattern. 

•  Actual vertices and edges 

1

43

65
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6
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6

2

Input graph Pattern Embeddings 47 
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Efficient Pattern Aggregation 
•  Goal: Aggregate automorphic patterns to single key 

•  Find canonical pattern 
•  No known polynomial solution 

1 2 2 4 3 5

3x Expensive graph 
canonization  

Canonical 
pattern 
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Efficient Pattern Aggregation 
•  Solution: 2-level pattern aggregation 

1.  Embeddings → quick patterns 
2.  Quick patterns → canonical pattern 

1 2 2 4 3 5

3x Linear matching to 
quick pattern  

2) Canonical pattern 

1) Quick patterns 

2x Expensive graph 
canonization  

49 
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Evaluation 
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Evaluation - Setup 
•  20 servers: 32 threads @ 2.67 GHz, 256GB RAM 
•  10 Gbps network 
•  3 algorithms: Frequent Subgraph Mining, Counting 

Motifs and Clique Finding 

# Vertices # Edges # Labels Avg. Degree 

CiteSeer 3,312 4,732 6 2.8 

MiCO 100,000 1,080,298 29 21.6 

Patents 2,745,761 13,965,409 37 10 

Youtube 4,589,876 43,968,798 80 19 

SN 5,022,893 198,613,776 0 79 

Instagram 179,527,876 887,390,802 0 9.8 
51 
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Evaluation - TLP & TLV 
•  Use case: frequent subgraph mining 
•  No scalability. Bottlenecks: 

•  TLV: Replication of embeddings, hotspots 
•  TLP: very few patterns do all the work 

52 

total of 32 execution threads at 2.67GHz per core and 256GB
RAM. The servers are connected with a 10 GbE network.
Hadoop 2.6.0 was configured so that each physical server
contains a single worker which can use all 32 execution
threads (unless otherwise stated). Arabesque runs on Giraph
development trunk from January 2015 with added function-
ality for obtaining cluster deployment details and improving
aggregation performance. These modifications amount to 10
extra lines of code.

Vertices Edges Labels Av. Degree
CiteSeer 3,312 4,732 6 2.8
MiCo 100,000 1,080,298 29 21.6
Patents 2,745,761 13,965,409 37 10
Youtube 4,589,876 43,968,798 80 19
SN 5,022,893 198,613,776 0 79
Instagram 179,527,876 887,390,802 0 9.8

Table 1: Graphs used for the evaluation.

Datasets: We use six datasets (see Table 1). CiteSeer [14]
has publications as vertices, with their Computer Science
area as label, and citations as edges. MiCo [14] has authors
as vertices, which are labeled with their field of interest, and
co-authorship of a paper as edges. Patents [18] contains ci-
tation edges between US Patents between January 1963 and
December 1999; the year the patent was granted is consid-
ered to be the label. Youtube [10] lists crawled video ids and
related videos for each video posted from February 2007 to
July 2008. The label is a combination of the video’s rating
and length. SN, is a snapshot of a real world Social Network,
which is not publicly available. Instagram is a snapshot of
the popular photo and video sharing social network collected
by [28]. We consider all the graphs to be undirected. Note
that even if some of these graphs are not very large, the ex-
plosion of the intermediate computation and state required
for graph exploration (see Figure 1) makes them very chal-
lenging for centralized algorithms.
Applications and Parameters: We consider the three appli-
cations discussed in Sections 2, which we label FSM, Motifs
and Cliques. By default, all Motifs executions are run with a
maximum embedding size of 4, denoted as MS=4, whereas
Cliques are run with a maximum embedding size of MS=5.
For FSM, we explicitly state the support, denoted S, used
in each experiment as this parameter is very sensitive to the
properties of the input graph.

6.2 Alternative Paradigms: TLV and TLP
We start by motivating the necessity for a new framework
for distributed graph mining. We evaluate the two alternative
computational paradigms that we discussed in Section 3.2.
Arabesque (i.e., TLE) will be evaluated in the next subsec-
tion. We consider the problem of frequent subgraph mining
(FSM) as a use case. Note that there are currently no dis-

tributed solutions to solve FSM on a single large input graph
in the literature.

1 5 10
0

2

4

6

8

10

Number of nodes (32 threads)

Sp
ee

du
p

Ideal TLP TLV

Figure 7: Scalability Analysis of Alternative Paradigms:
FSM (S=300) on CiteSeer.

The Case of TLV: Our TLV implementation globally
maintains the set of embeddings that have been visited,
much like Arabesque. The implementation adopts the TLV
approach as described in Section 3.2 and uses the same
coordination-free technique as Arabesque to avoid redun-
dant work. The TLV implementation also uses application-
specific approaches to control the expansion process. Our
TLV implementation of FSM uses this feature to follow the
standard depth-first strategy of gSpan [43].

In Figure 7, we show the scalability of FSM with support
300 using the CiteSeer graph. As seen from the figure, TLV
does not scale beyond 5 servers. A major scalability bottle-
neck is that each embedding needs to be replicated to each
vertex that has the necessary local information to expand the
embedding further. In addition, high-degree vertices need to
expand a disproportionate fraction of embeddings. CiteSeer
is a scale-free graph thus affecting the scalability of TLV.

Overall TLV performance is two orders of magnitude
slower compared to Arabesque. TLV requires more than 300
seconds to run FSM on the CiteSeer graph, while Arabesque
requires only 7 seconds for the same setup. The total mes-
sages exchanged for this tiny graph is 120 million, versus
137 thousand messages required by Arabesque. Due to the
hot-spots inherent to the graph structure, or the label distri-
bution, and the extended duplication of state that the TLV
paradigm requires, we conclude that TLV is not suited for
solving these problems.

The Case of TLP: The TLP implementation is based on
GRAMI [14], which represents the state of the art for cen-
tralized FSM. GRAMI keeps state on a per-pattern basis, so
few relatively straightforward changes to the code-base were
sufficient to derive a TLP implementation where patterns are
partitioned across a set of distributed workers.

GRAMI uses a number of optimizations that are specific
to FSM. In particular, it avoids materializing all embeddings
related to a pattern, a common approach for TLP algorithms.
Whenever a new pattern is generated, its instances are re-
calculated on the fly, stopping as soon as a sufficient number
of embeddings to pass the frequency threshold is found.
GRAMI thus solves a simpler problem than the TLV and
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Evaluation - Araquesque Scalability 
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Evaluation – Arabesque Scalability 

Application - Graph Centralized 
Baseline 

Arabesque - Num. Servers  
(32 threads) 

1 5 10 15 20 
Motifs - MiCo 8,664s 328s 74s 41s 31s 25s 

FSM - Citeseer 1,813s 431s 105s 65s 52s 41s 

Cliques - MiCo 14,901s 1,185s 272s 140s 91s 70s 

Motifs - Youtube Fail 8,995s 2,218s 1,167s 900s 709s 

FSM - Patents >19h 548s 186s 132s 102s 88s 
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Evaluation - ODAGs Compression 
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4000 
vertices 

1.7 billion 
subgraphs 

44 GB 

60 MB 
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Evaluation - Speedup w ODAGs 
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Efficient Pattern Aggregation 
•  Solution: 2-level pattern aggregation 

1.  Embeddings → quick patterns 
2.  Quick patterns → canonical pattern 

1 2 2 4 3 5

3x Linear matching to 
quick pattern  

2) Canonical pattern 

1) Quick patterns 

2x Expensive graph 
canonization  
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Evaluation - Two-level aggregation 

Motifs MiCo (MS = 
4) 

Motifs Youtube (MS=4) FSM CiteSeer (S=220, 
MS=7) 

FSM Patents 
(S=24k) 

Embeddings 10,957,439,024 218,909,854,429 1,680,983,703 1,910,611,704 

Quick Patterns 21 21 1433 1800 

Canonical Patterns 6 6 97 1348 

Reduction Factor 521,782,810x 10,424,278,782x 1,173,052x 1,061,451x 
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Evaluation - Two-level aggregation 
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CPU Utilization Breakdown 

60 

•  Advantages of a simple API 
•  Arabesque does all the work (unlike TLV system) 
•  Great opportunities for system-level optimizations 

P: Pattern Aggregation, C: canonicality checks, G: generate new candidates, R/W: Read/write embeddings    
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Large Graphs 

Graph # Vertices # Edges # Labels Avg. Degree 
SN 5,022,893 198,613,776 0 79 

Instagram 179,527,876 887,390,802 0 9.8 

Application Time Embeddings 
Motifs-SN (MS=4) 6h 18m 8.4 trillion 

Cliques-SN (MS=5) 29m 30 billion 

Motifs-Instagram (MS=3) 10h 45m 5 trillion 
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What’s Next? 
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Future Work 
•  Better ways to organize intermediate state 

•  Scale to larger intermediate states 
•  Support for approximate exploration 
•  Out-of-core? 

•  Support for real-time graphs 
•  Verticals and new applications 
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Conclusions 
•  Fundamental trend: democratizing data analytics 
  
•  Arabesque: graph mining system 

•  Straightforward to code 
•  Transparent and scalable distribution 
•  High performance 
 

•  Only a first step: many opportunities for improvement 
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Download It, Play with It, Hack It 

70 

http://arabesque.io 
 
●  Open-source (Apache 2.0) 
●  Pre-compiled jar 
●  User guide 

 



Thank you 
arabesque.io 
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