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Subgraph Matching

Input: Data graph G (V, E, L), Query graph Q (V4, Eq, L9)
Output: All subgraphs in G that “match™ Q

* Applications
— Search in OSN, Knowledge graphs, plagiarism detection, ...

* Matching Models
— Subgraph Isomorphism
* Exact matching
— Graph Simulation

* Relaxed matching
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Subgraph Isomorphism

Q matches data graph G iff there exists subgraph G°S G and bijective
function f: VQ — VS such that

e anynode v € V9 and f(v) € V> have the same label

* An edge (Vi,Vj) € E1 exists iff (f(vl-),f(vj)) € ES
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Graph Simulation

Subgraph Simulation:

* Q matches data graph G if a binary relation R & V4 XV exists such that
— Dif(u,u’) €R then 19(u) = 1l(u');
— 2)V(u,v) € E?, 3, v') €EE: (u,u’) € R;
— 3HvueVi,3au eV:(u,u’) ER

Subgraph Dual Simulation:
* Q matches data graph G if

— 1) Q matches G via graph simulation under a match relation R, & VIXV;
- 2)V(u,u') €ERp [w,u) € E? =2 3Iw' e V:(w,w') € Ry Alw',u') € E]
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Dynamic Graphs

* Graphs that change with time
— Dynamic Network, e.g., G=(V.EW), W ={w,, w,, ..., w;}
— Evolving Graph, e.g., Gt = (V. EY)
— Temporal Graph, e.g., graph sequence {(G,, ..., G, ..., G}

— Graph Stream, e.g., G .= {(a" g%V ..., Gtet1=D) |
— Networks Sequence, i.e., {G'}._, .. ; T
— Time-Series Graphs

* Usually, used for event detection
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Subgraph Matching in Dynamic Graphs

* Focus: How to maintain a set of subgraph matches in a dynamic graph?

Query Graph

— Let M, be the set of subgraphs in G, that match query graph Q via subgraph
isomorphism

— An incremental subgraph matching algorithm takes G,, Ae, and M, as input, to
produce M,.; for G,;; by computing the changes AM to set M,

e QObservation:

— The set of subgraphs that can be potentially affected by an edge update is
within a radius from the edge update

— This “neighborhood” is bounded by the query diameter
* Assumption: Dy << Dg
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A Distributed Incremental Algorithm

Goal: leverage already computed results to
minimize unnecessary re-computations

Solution: framework that re-uses legacy SIM
libraries developed for small staticgraphs
Edge updates are processed in batches
Practitioner assign edge updates to workers
Each worker is responsible for maintaining a
disjoint partitionof G

When an update arrives at a worker

— Distributed depth limited BFS (may span to
graph portions stored in other workers)

— Affected subgraph is copied to worker
— Matches are made on the affected subgraph
— Matches are sent to the Reducer

School of Engineering

Existing subgraph isomorphism
libraries can be used to find matches

Parallelism at multiple levels

* Edge updates are processed in
parallel

* Distributed subgraph construction
for each edge update
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Graph Pruning

* Performance can degrade with increasingquery graph diameter
* Even more so in small diameter graphs

— An edge update can affect subgraph matches in a major portion of the graph

— The size of the subgraph constructed by the distributed depth limited BFS can
grow fast with increasing Dq

e Solution:

— Distributed algorithm to maintain a pruned graph based on dual simulation in
a dynamic graph and the notion of safe edges

— Reduces the size of G to be searched for matches
— Reduces communication overhead of subgraph construction

* Algorithm follows the BSP model
 Complexity

- O(E{SCC}) super-steps, where Egccy is the number of edges in the largest
strongly connected component
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Evaluation - Setup

* Implementation
— C++, MPI (MPICH2)
— VF2 1s used for subgraph matching within neighborhood subgraphs
— Lemon graph library for efficient implementation of graph data structure

* Platform
— Amazon EC2 — c3.2xlarge
— 5 nodes
* Datasets
Dataset |V | E | Type
California R/N (CA) 1,965,206 2,766,607 | Large diameter

Central USA R/N (CTR) 14,081,816 | 34202496 | Large diameter
Full USA R/N (USA) 23,947 347 | 58,333,344 | Large diameter

DBLP network (DELP) 317,080 1.049,866 Small-diameter
YouTube (YT) 4045382 49 445,382 | Small-diameter
Live Journal (LJ) 5,284,457 77.402,652 | Small-diameter

* Query graphs: D=1,2,3 (|V|=5,12,17)
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Evaluation Results (1)

* Latency comparison with/without graph pruning
* Baseline: Sequential exact subgraph isomorphismalgorithm [TODS2013]
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Facilitated incremental exact matching on large diameter networks
Pruning significantly improves performance on small world networks
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Evaluation Results (2)

* Average % reductionin graph size
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Evaluation Results (3)

* Latency with increasing number of workers
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Conclusion and Future Work

Proposed a query preserving distributed graph pruning
approach (D-IDS) to enable exact subgraph matching in
small diameter dynamic graphs

Graph pruning resulted in over 60% reduction 1n graph size in
real-world networks

Significantly mmproved the performance of neighborhood
search based subgraph matching for small diameter graphs

Future work
— Examine impact of graph partitioning strategies

— Study effect of update rate in a variety of dynamic settings
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Questions?

* Thankyoul!
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