

Distributed Exact Subgraph Matching in Small Diameter Dynamic Graphs

Charith Wickramaarachchi[†], Rajgopal Kannan[†] <u>*Charalampos Chelmis**, and Viktor K. Prasanna[†]</u>

> [†]University of Southern California *University at Albany SUNY

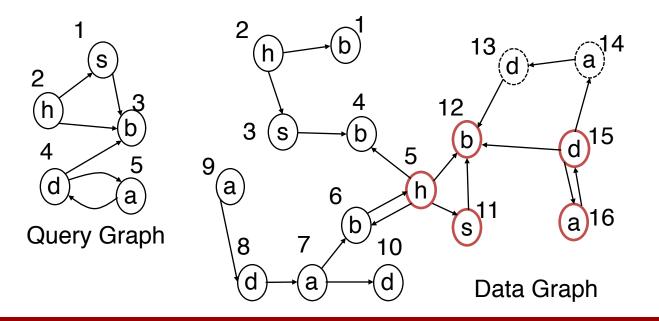
cchelmis@albany.edu

Outline

- Subgraph Matching
- Dynamic Graphs
- Exact Subgraph Matching in Dynamic Graphs
- Graph Pruning
- Evaluation
- Conclusion and Future Work

Subgraph Matching

Input: Data graph G (V, E, L), Query graph Q (V^q, E^q, L^q) **Output:** All subgraphs in G that "match" Q


- Applications
 - Search in OSN, Knowledge graphs, plagiarism detection, ...
- Matching Models
 - Subgraph Isomorphism
 - Exact matching
 - Graph Simulation
 - Relaxed matching

Subgraph Isomorphism

Q matches data graph G iff there exists subgraph $G^S \subseteq G$ and bijective function f: $V^Q \rightarrow V^S$ such that

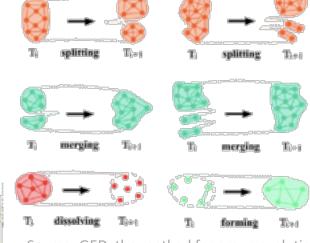
- any node $v \in V^q$ and $f(v) \in V^S$ have the same label
- An edge $(v_i, v_j) \in E^q$ exists iff $(f(v_i), f(v_j)) \in E^S$

Graph Simulation

Subgraph Simulation:

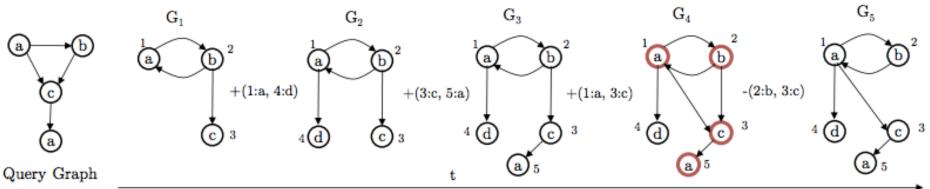
- Q matches data graph G if a binary relation $R \subseteq V^q \times V$ exists such that
 - 1) if $(u, u') \in R$ then $l^{q}(u) = l(u')$;
 - $-2) \forall (u,v) \in E^q, \exists (u',v') \in E: (u,u') \in R;$
 - $3) \forall u \in V^q, \exists u' \in V: (u, u') \in R$

Subgraph Dual Simulation:


- Q matches data graph G if
 - 1) Q matches G via graph simulation under a match relation $R_D \subseteq V^q \times V$;
 - $-2) \forall (u,u') \in R_D [(w,u) \in E^q \implies \exists w' \in V : (w,w') \in R_D \land (w',u') \in E]$

Dynamic Graphs

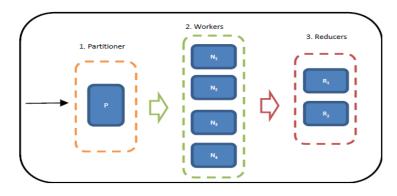
- Graphs that change with time
 - Dynamic Network, e.g., $G = (V, E, W), W = \{w_1, w_2, ..., w_T\}$
 - Evolving Graph, e.g., $G^t = (V^t, E^t)$
 - Temporal Graph, e.g., graph sequence $\{G_1, \ldots, G_v, \ldots, G_T\}$
 - Graph Stream, e.g., $\mathcal{G}^{(s)} := \{G^{(t_s)}, G^{(t_s+1)}, \dots, G^{(t_{s+1}-1)}\}$
 - Networks Sequence, i.e., $\{G^t\}_{t=0,\cdots,T}$
 - Time-Series Graphs
- Usually, used for event detection



Source: GED: the method for group evolution discovery in social networks

Subgraph Matching in Dynamic Graphs

Focus: How to maintain a set of subgraph matches in a dynamic graph?



- Let M_t be the set of subgraphs in G_t that match query graph Q via subgraph isomorphism
- An **incremental** subgraph matching algorithm takes G_t , Δe_u and M_t as input, to produce M_{t+1} for G_{t+1} by computing the **changes** ΔM to set M_t
- Observation:
 - The set of subgraphs that can be potentially affected by an edge update is within a **radius** from the edge update
 - This "neighborhood" is bounded by the query **diameter**
- Assumption: $D_Q \ll D_G$

A Distributed Incremental Algorithm

- Goal: leverage already computed results to minimize unnecessary re-computations
- Solution: framework that re-uses legacy SIM libraries developed for small static graphs
- Edge updates are processed in batches
- Practitioner assign edge updates to workers
- Each worker is responsible for maintaining a disjoint partition of G
- When an update arrives at a worker
 - Distributed depth limited BFS (may span to graph portions stored in other workers)
 - Affected subgraph is copied to worker
 - Matches are made on the affected subgraph
 - Matches are sent to the Reducer

Existing subgraph isomorphism libraries can be used to find matches

Parallelism at multiple levels

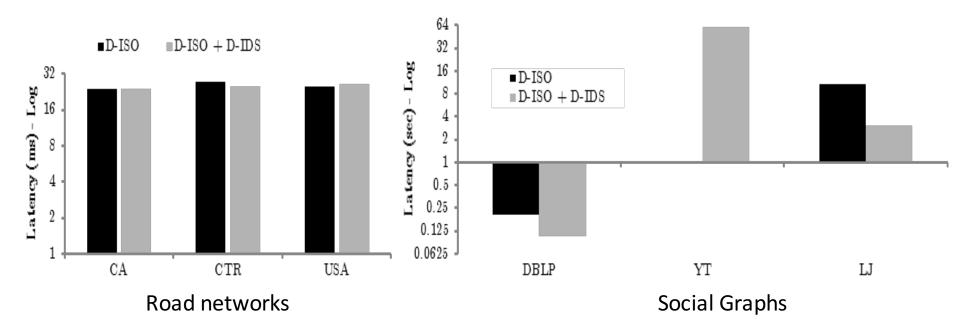
- Edge updates are processed in parallel
- Distributed subgraph construction for each edge update

Graph Pruning

- Performance can degrade with increasing query graph diameter
- Even more so in **small diameter** graphs
 - An edge update can affect subgraph matches in a major portion of the graph
 - The size of the subgraph constructed by the distributed depth limited BFS can grow fast with increasing D_{Q}
- Solution:
 - Distributed algorithm to maintain a pruned graph based on dual simulation in a dynamic graph and the notion of safe edges
 - Reduces the size of G to be searched for matches
 - Reduces communication overhead of subgraph construction
- Algorithm follows the BSP model
- Complexity
 - $O(E_{\{SCC\}})$ super-steps, where $E_{\{SCC\}}$ is the number of edges in the largest strongly connected component

Evaluation - Setup

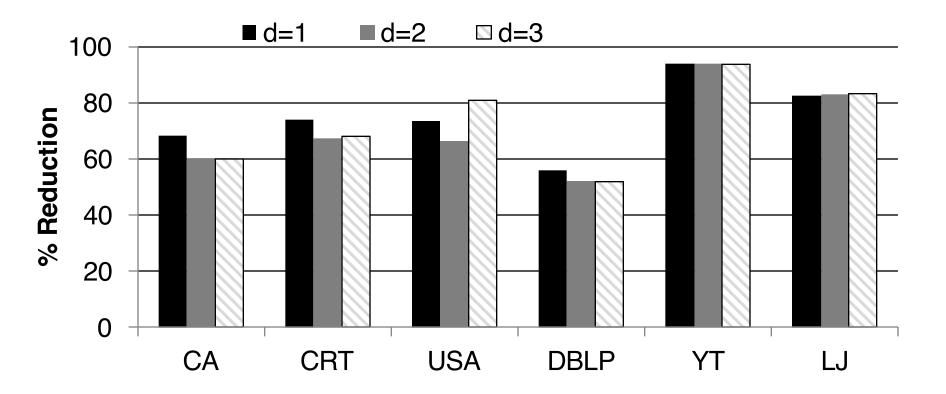
- Implementation
 - C++, MPI (MPICH2)
 - VF2 is used for subgraph matching within neighborhood subgraphs
 - Lemon graph library for efficient implementation of graph data structure
- Platform
 - Amazon EC2 c3.2xlarge
 - 5 nodes
- Datasets


Dataset	V		Туре
California R/N (CA)	1,965,206	2,766,607	Large diameter
Central USA R/N (CTR)	14,081,816	34,292,496	Large diameter
Full USA R/N (USA)	23,947,347	58,333,344	Large diameter
DBLP network (DBLP)	317,080	1,049,866	Small-diameter
YouTube (YT)	4,945,382	49,445,382	Small-diameter
Live Journal (LJ)	5,284,457	77,402,652	Small-diameter

• Query graphs: D = 1,2,3 (|V|=5,12,17)

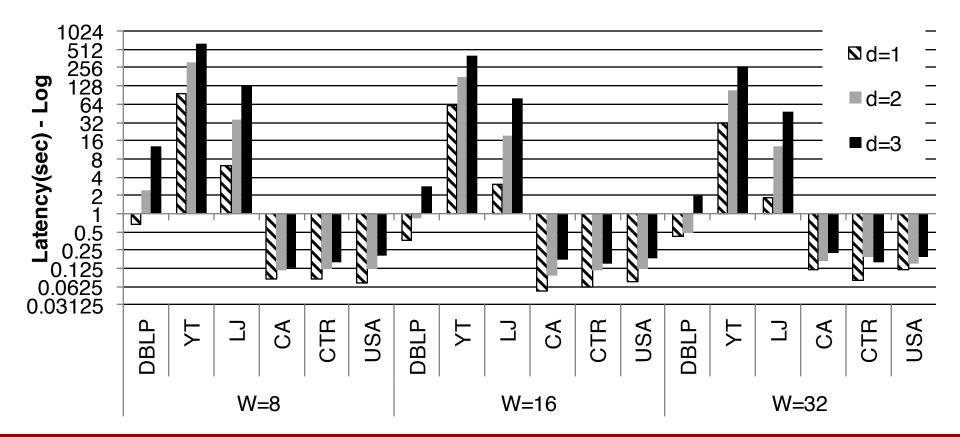
Evaluation Results (1)

- Latency comparison with/without graph pruning
- Baseline: Sequential exact subgraph isomorphism algorithm [TODS2013]


Facilitated incremental exact matching on large diameter networks

Pruning significantly improves performance on small world networks

Evaluation Results (2)


• Average % reduction in graph size

Evaluation Results (3)

• Latency with increasing number of workers

University of Southern California

Conclusion and Future Work

- Proposed a query preserving distributed graph pruning approach (D-IDS) to enable **exact subgraph matching** in **small diameter dynamic** graphs
- Graph pruning resulted in over 60% reduction in graph size in real-world networks
- Significantly improved the performance of neighborhood search based subgraph matching for small diameter graphs
- Future work
 - Examine impact of graph partitioning strategies
 - Study effect of update rate in a variety of dynamic settings

• Thank you!

