
Distributed Exact Subgraph Matching in Small
Diameter Dynamic Graphs

∤University of Southern California
*University at Albany SUNY

Charith Wickramaarachchi∤, Rajgopal Kannan∤

Charalampos Chelmis*, and Viktor K. Prasanna∤

cchelmis@albany.edu

Outline

• Subgraph Matching
• Dynamic Graphs
• Exact Subgraph Matching in Dynamic Graphs
• Graph Pruning
• Evaluation
• Conclusion and Future Work

Subgraph Matching

3

Input: Data graph G (V, E, L), Query graph Q (Vq, Eq, Lq)
Output: All subgraphs in G that “match” Q

• Applications
– Search in OSN, Knowledge graphs, plagiarism detection, …

• Matching Models
– Subgraph Isomorphism

• Exact matching
– Graph Simulation

• Relaxed matching

Subgraph Isomorphism

4

Q matches data graph G iff there exists subgraph GS⊆ G and bijective
function f: VQ →VS such that
• any node 𝑣 ∈ 𝑉& and f(𝑣) ∈ 𝑉* have the same label

• An edge v,, v. ∈ 𝐸&	exists iff 𝑓 𝑣7 , 𝑓 𝑣8 ∈ 𝐸*

h

s

b

d a

1

2
3

54

bh

s b

h

b

s

d a

d

ab

a dd

a

Query Graph

Data Graph

12

3
4

5
6

78

9

10
11

12

13 14

15

16

Graph Simulation

5

Subgraph Simulation:
• Q matches data graph G if a binary relation𝑅	⊆ 𝑉&	×𝑉	exists such that

– 1) if 𝑢, 𝑢< ∈ 𝑅	then 𝑙& 𝑢 = 𝑙 𝑢< ;
– 2)	∀ 𝑢,𝑣 ∈ 𝐸&, ∃ 𝑢<, 𝑣< ∈ 𝐸: 𝑢, 𝑢< ∈ 𝑅;
– 3) ∀𝑢 ∈ 𝑉& ,∃𝑢< ∈ 𝑉: 𝑢, 𝑢< ∈ 𝑅

Subgraph Dual Simulation:
• Q matches data graph G if

– 1) Q matches G via graph simulation under a match relation 𝑅𝐷⊆ 𝑉&×𝑉;
– 2) ∀ 𝑢,𝑢< ∈ 𝑅𝐷 [𝑤, 𝑢 ∈ 𝐸& 	⇒ ∃𝑤< ∈ 𝑉: 𝑤, 𝑤< ∈ 𝑅H	⋀ 𝑤<,𝑢< ∈ 𝐸]

Dynamic Graphs

6

• Graphs that change with time
– Dynamic	Network,	e.g.,	G=(V,E,W),	W	=	{w1,	w2,	.	.	.	,	wT}

– Evolving	Graph,	e.g.,	Gt =	(Vt,Et)

– Temporal	Graph,	e.g.,	graph	sequence	{G1,	.	.	.	,	Gt,	.	.	.	,	GT}

– Graph	Stream,	e.g.,	
– Networks	Sequence,	i.e.,	{Gt}t=0,···	,T
– Time-Series	Graphs

• Usually, used for event detection

Source:	NetSpot:	Spotting	Significant	
Anomalous	Regions	on	Dynamic	Networks

Source:	GED:	the	method	for	group	evolution	
discovery	 in	social	networks

Subgraph Matching in Dynamic Graphs

7

• Focus: How to maintain a set of subgraph matches in a dynamic graph?

– Let Mt be the set of subgraphs in Gt that match query graph Q via subgraph
isomorphism

– An incremental subgraph matching algorithm takes Gt, ∆eu and Mt as input, to
produce Mt+1 for Gt+1 by computing the changes ∆M to set Mt

• Observation:
– The set of subgraphs that can be potentially affected by an edge update is

within a radius from the edge update
– This “neighborhood” is bounded by the query diameter

• Assumption: DQ << DG

A Distributed Incremental Algorithm

8

• Goal:	leverage	already	computed	results	to	
minimize	unnecessary	re-computations

• Solution:	framework	that	re-uses	legacy	SIM	
libraries	developed	for	small	static	graphs

• Edge	updates	are	processed	in	batches
• Practitioner	assign	edge	updates	to	workers	
• Each	worker	is	responsible	for	maintaining	a	

disjoint	partition	of	G
• When	an	update	arrives	at	a	worker

– Distributed	depth	limited	BFS	(may	span	to	
graph	portions	 stored	in	other	workers)

– Affected	subgraph is	copied	to	worker
– Matches	are	made	on	the	affected	subgraph
– Matches	are	sent	to	the	Reducer

Existing	subgraph isomorphism	
libraries	can	be	used	to	find	matches

Parallelism	at	multiple	levels
• Edge	updates	are	processed	in	

parallel
• Distributed	subgraph construction	

for	each	edge	update

Graph Pruning

9

• Performance	can	degrade	with	increasing	query	graph	diameter
• Even	more	so	in	small	diameter	graphs

– An	edge	update	can	affect	subgraph	matches	in	a	major	portion	of	 the	graph
– The	size	of	the	subgraph constructed	by	the	distributed	depth	limited	BFS	can	

grow	fast	with	increasing	DQ

• Solution:
– Distributed	algorithm	to	maintain	a	pruned	graph	based	on	dual	simulation	in	

a	dynamic	graph	and	the	notion	 of	safe	edges
– Reduces	the	size	of	G to	be	searched	for	matches
– Reduces	communication	overhead	of	subgraph construction

• Algorithm	follows	the	BSP	model
• Complexity

– 𝑂 𝐸 *LL super-steps,	where	𝐸 *LL is	the	number	of	edges	in	the	largest		
strongly	connected	component

Evaluation - Setup

10

• Implementation
– C++, MPI (MPICH2)
– VF2 is used for subgraph matching within neighborhood subgraphs
– Lemon graph library for efficient implementation of graph data structure

• Platform
– Amazon EC2 – c3.2xlarge
– 5 nodes

• Datasets

• Query graphs: D = 1,2,3 (|V|=5,12,17)

Evaluation Results (1)

11

• Latency comparison with/without graph pruning
• Baseline: Sequential	exact subgraph isomorphism	algorithm	[TODS2013]

Road	networks Social	Graphs

Facilitated incremental	exact	matching	on	large	diameter	networks
Pruning	 significantly improvesperformance	on	small	world	networks

Evaluation Results (2)

12

• Average % reduction in graph size

0

20

40

60

80

100

CA CRT USA DBLP YT LJ

%
 R

ed
uc

tio
n

d=1 d=2 d=3

Evaluation Results (3)

13

• Latency with increasing number of workers

0.03125
0.0625

0.125
0.25

0.5
1
2
4
8

16
32
64

128
256
512

1024

D
BL

P YT LJ C
A

C
TR

U
SA

D
BL

P YT LJ C
A

C
TR

U
SA

D
BL

P YT LJ C
A

C
TR

U
SA

W=8 W=16 W=32

La
te

nc
y(

se
c)

 -
Lo

g

d=1

d=2

d=3

Conclusion and Future Work

14

• Proposed a query preserving distributed graph pruning
approach (D-IDS) to enable exact subgraph matching in
small diameter dynamic graphs

• Graph pruning resulted in over 60% reduction in graph size in
real-world networks

• Significantly improved the performance of neighborhood
search based subgraph matching for small diameter graphs

• Future work
– Examine impact of graph partitioning strategies
– Study effect of update rate in a variety of dynamic settings

Questions?

15

• Thank	you!

