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Big	Data	is	Big	Business
• Exciting	advances	in	systems,	architecture,	computation

• Should research focus on big solutions to big problems?



Does	Big	Data	need	Big	Systems?

• Ingenious	ways	of	throwing	resources	at	problems
• Are	cycles	and	hardware	no	longer	cost	limited?
• Or	is	this	a	cycle	of	resource	addiction?

Business of
big	systems,		
architecture	&	
computation

Research in	big	
systems,		
architecture	&	
computation



“But	I	had	to	grow	bigger.	So	bigger	I	got”

The	Lorax
Dr.	Suess

1971	

“Just	because	you	can,	doesn’t	mean	you	should”

Popular	wisdom



Research	Big	to	Execute	Small

• Often	want	fast	answers	to	retrospective	queries
– Data-driven	automated	control,	interactive	data	analysis

• Approximate	answers	to	queries	often	sufficient
– Compare	with	modeling	uncertainties,	uncontrolled	variables

• Experience?	ISPs	have	worked	with	Big	Data	at	network	scale	for	years:	
– Operational	datasets	used	to	manage	network	over	range	of	timescales

• capacity	planning	(months),	….	,	detecting	network	attacks	(seconds)

Enable
operational	tradeoffs
Exact	vs.	approximate
Bigger	vs.	smaller
Faster	vs.	slower

Research how	
to	render	big	
data	smaller



This	talk
• Adaptive	sampling	in	data	streams

• Aim:	Constructing	a	reference	sample	for	queries
– Matching	data	characteristics	to	queries

• Non-uniform	sampling	for	heavy	tails
• Setting:	stream	sampling	in	ISP	measurements

• Develop	approach	from	graph	stream	sampling
– Target	queries:	subgraph	counts
– Adapt	sampling	probabilities	for	arriving	edges

• Depends	on	role	in	sampled	topology
• Enhance	ability	to	query	target	subgraphs	



Structure	of	Large	ISP	Networks
Peering	with	other	ISPs

Access	Networks:	
Wireless,	DSL,	IPTV

City-level
Router	Centers

Backbone		Links

Downstream	ISP	and	
business	customers

Service	and	
Datacenters

Network	Management	
&	Administration



Operational	ISP	Network	Data
Peering

Access
Router Centers

Backbone

Business

DatacentersManagement

Link	Traffic	Rates
Aggregated	per	router	interface

OD	Traffic	Matrices
Flow	records	from	routers

Loss &	Latency
Active	probing

Loss	&	Latency	
Roundtrip to	edge

Protocol	Monitoring:
Routers,	Wireless	handoffsStatus	Reports:

Device	failures	and	transitions

Customer	Care	Logs



Why	Summarize	ISP	Operational	Data?	

• Limited	bandwidth
– Processing	cycles	within	measurement	devices	
– For	transmission	of	data	to	collectors

• Limited	storage
– Infeasible	to	accumulate	raw	data	streams	over	
extended	periods

• Limited	time
– Need	fast	query	response
– Infeasible	to	run	exploratory	queries	over	full	data



Why	Sample?

• Sampling	has	an	intuitive	semantics
– We	obtain	a	smaller	data	set	with	the	same	structure

• Estimating	on	a		sample	is	often	straightforward
– Run	the	analysis	on	the	sample	that	you	would	on	the	full	data

• Futureproof
– Don’t	need	to	know	queries	at	time	of	sampling

• “Where/where	did	that	suspicious	UDP	port	first	become	so	active?”
• “Which	is	the	most	active	IP	address	within	than	anomalous	subnet?”

– Contrast	with	other	types	of	summary:	
• can’t	drill	down	into	aggregates



Sampling	as	a	Mediator	of	Constraints
Data	Characteristics

(Heavy	Tails,	Correlations)

Query	Requirements
(Ad	Hoc,	Accuracy,	Speed)

Resource	Constraints
(Bandwidth,	Storage,	CPU,	

Cloud	Cost)

Sampling



Peering

Access
Router	Centers

Backbone

Business

DatacentersManagement

Origin-Destination	
Traffic	Flow	Statistics
Generated	by	routers

ISP	Data:	Traffic	Flow	Statistics



Flow	Records

• IP	Flow:	
• Set	of	packets	with	common	flow	key observed	close	in	time

• Flow	Key:
– Origin/Destination	IP	addresses,	TCP/UDP	ports of	packets	in	the	flow,

• Flow	Records:	
– Summaries	of	flows	(key,	#packet,	#byte,	first/last	packet	time,	…)
– Continuously	compiled	by	routers,	exported	to	collector

• 10’s	PetaBytes daily	network	traffic	è 100’s	TeraBytes flow	records
– Applications

• Routine:	compute	time	series	of	aggregates	over	pre-defined	selectors
• Challenge:	real-time	detection	of	botnet	victim	acquisition,	communications,	attacks

flow	1 flow	2 flow	3 flow	4

timeTimeline	of	packets	arriving	at	router:	color	=	flow	key



Abstraction:	Keyed	Data	Streams
• Data	Model:	items	are	keyed	weights

– Item	(x,k):	Weight	x;	key	k
• x	=	flow	bytes,	k	=	flow	key	(common	endpoints	of	packets)

• Stream	of	keyed	weights
– {(xi , ki):	i =	1,2,…,n}	)

• Generic	query:	subset	sums
– X(S)	=	ΣiÎS xi S	Ì {1,2,…,n}	i.e.	total	weight	of	index	subset	S

– Typically	S	=	S(K)	=	{i:	kiÎ K}	:	items	with	keys	in	K
• X(S(K))	=	e.g.	total	bytes	to	given	IP	dst address	/	port

• Aim:
– Compute	fixed	size	summary	of	stream	that	can	be	used	to	estimate	arbitrary	

subset	sums	with	known	error	bounds



Inclusion	Sampling	and	Estimation
• Horvitz-Thompson	(1952)

– Item	i of	size	xi is	sampled	with	probability	pi
– Estimate	x’i =	xi /	pi (if	sampled),	0	if	not
– Unbiased:	E[x’i]	=	xi

• Linearity	
– Estimate	of	subset	sum	=	sum	of	corresponding	estimates
– Subset	sum	X(S)= SiÎS xi has	estimate	X’(S)	=	SiÎS x’i

• Query	on	S:	find	matching	items	in	sample	and	sum	estimates

• Accuracy
– Exponential	Bounds:	Pr[	|X’(S)	- X(S)|	>	δX(S)	]	≤	e-g(δ)X(S)

– Translate	into	confidence	intervals	for	X(S)



Matching	Data	to	Analysis	with	Sampling

• Generic	problem	1:	Counting	items:	use	weight	xi =	1
– Uniform	sampling	with	probability	p	works	fine
– Estimated	subset	count	X’(S)	=	#{samples	in	S}	/	p
– Accuracy?

– relative	variance	of	X’(S)	=	(1/p	-1)/X(S)
– given	p,	get	any	desired	accuracy	for	large	enough	S



Heavy	Tails	in	the	Internet	and	Beyond

• Heavy	tailed	distribution
– E.g.	Pareto,	P[X>	x]	~	x-α

– 80-20	Laws:	Small	fraction	of	items	have	large	fraction	of	weight
• Many	examples

– Degree	distributions	in	web	graph,	social	networks
– Bytes	and	packets	per	network	flow
– Files	sizes	in	storage

17



Matching	Data	to	Analysis	with	Sampling

• Generic	problem	2:	xi in	Pareto	distribution
• Uniform	sampling?

– Likely	to	omit	heavy	items		Þ big	hit	on	accuracy
– Making	selection	set	S	large	doesn’t	help

• Select	m	largest	items	?
– biased	&	smaller	items	systematically	ignored



Sample	Cost	Optimization
• Independent	sampling	from	n	items	with	weights	{x1,…	,xn}

• Goal:	find	the	“best”	sampling	probabilities	{p1,	…	,pn}

• Horvitz-Thompson:	unbiased	estimate	of	each	xi by	

• Two	costs	
1. Sampling	variance	from	Horvitz-Thompson	:			Var(x’i)	=	x2i	(1/pi – 1)
2. Expected	Sample	Size:		Sipi

• Minimize	Linear	Combination	Cost:	Si (xi2(1/pi	–1)		+		z2 pi)
– z	expresses	relative	importance	of	small	sample	vs.	small	variance

x'i =
$
$

!
"
#

xi pi if$weight$$i$$selected
0 otherwise



Minimal	Cost	Sampling
• Minimize

– Cost	Si (xi2 (1/pi	– 1)		+	z2 pi)	subject	to	1	≥	pi ≥	0

• Solution
– IPPS:	Inclusion	probability	proportional	to	size
– pi =	pz(xi)	=	min{1,	xi /z}
– Call	z	the	“sampling	threshold”
– Unbiased	estimator	xi/pi =max{xi ,	z}

pz(x)	

1

z
x

Small	items	(xi ≤	z):	PPS

Probability	Proportional	to	Size

Large	items	(xi >	z):	

Selection	Probability		=	1



Taming	the	Heavy	Tail

• Distribution	of	packet	count	estimates

Uniform	sampling IPPS	sampling



Variations	on	a	Theme
• Matching	sampling	to	estimation	is	versatile	approach	to	sample	design

– Many	variations	expressing	different	resource	and	estimation	goals

• Fixed	Size	Sampling:	Reservoir	IPPS	sampling
[Cohen,	Duffield,	Lund,	Kaplan,	Thorup;		SODA	2009,		SIAM	J.	Comput.	2011]

• Structure-Aware	Sampling
– Minimize	variance	only	for	Range	Queries	(e.g.	IP	prefixes)

[Cohen,	Cormode,	Duffield,	PVLDB	2011]

• Fair	Sampling	over	subpopulation	streams	of	different	rates
– Minimizing	Relative variance	of	subpopulation	subset	sums

[Duffield,	Sigmetrics	2012]
• Stable	Sampling

– Minimize	churn	in	sample	set	
[Cohen,	Cormode,	Duffield,	Lund,	TALG	2016]

• IPPS	sampling	&	variations	used	in	ISP	measurement	today



Estimation	Accuracy	in	Practice
• Aim:	estimate	heavy	hitters

– any	subset	sum	comprising	at	least	some	fraction	f	of	total	weight		

• Suppose:	sample	size	m
• Analysis:	typical	estimation	error	ε (relative	standard	deviation)	obeys

ε <	(f	m)-1/2

0.10%

1.00%

10.00%

100.00%

0.0001 0.001 0.01 0.1 1
R

SD
 ε

fraction f

m = 64k samples

Estimate fraction f = 0.1% 
with typical relative error 

~ 10%



Heavy	Hitters:	Exact	vs.	Aggregate	vs.	Sampled

• Sampling	does	not	tell	you	where	the	interesting	features	are
– But	does	speed	up	the	ability	to	find	them	with	existing	tools

• Example:	Heavy	Hitter	Detection
– Setting:	Flow	records	reporting	10GB/s	traffic	stream
– Aim:	find	Heavy	Hitters	=	IP	prefixes	comprising	≥	0.1%	of		traffic
– Response	time	needed:	5	minute

• Compare:
– Exact:	10GB/s	x	5	minutes	yields	upwards	of	300M	flow	records
– 64k	aggregates	over	16	bit	prefixes:	no	deeper	drill-down	possible
– Sampled:	64k	flow	records:	any aggregate	≥	0.1%		accurate	to	~10%

Exact Aggregate Sampled



Graphs	=	Really	Big	Data

• Operational	Graph	Data
– Search	providers:	web	graphs	(billions	of	pages	indexed)
– Online	social	networks:

• Facebook:	~109 users	(nodes),	~1012 edges	(relationships)
– ISPs:	communications	graphs

• From	flow	records:	node	=	IP	src/dst,	edge	if	traffic	flows	between	them	

• Graph	Streaming	Data
– Transactional	edge	data	often	not	maintained	in	graphical	form

• Real	time	streams	e.g.	flow	records,	or	stored	transactions	e.g.	retail	purchases

– Need	to	support	fast,	retrospective	queries	over	multilayer	graphs
• IP	communications	graph,	social	networks,	external	resource	graphs

– Sampling	needs	to	be	representative	over	sets	of	target	query	objects
• nodes,	links,	paths,	subgraphs,…



Social 
Network Internet (AS)

BiologicalPolitical Blogs

Graph 
Analytics



Example:	Streaming	ISP	Graphs
• Node	=	IP	address		
• Directed	edge	=	flow	from	source	node	to	destination	node

compromise

control

flooding

• Hard	to	detect	against	background
• Known	attacks:	

– Signature	matching	based	on	partial	graphs,	
flow	features,	timing

• Unknown	attacks:	
– exploratory	&	retrospective	analysis
– preserve	accuracy	if	sampling?



Streaming	Subgraph	Estimation
• Hot	topic:	sample-based	subgraph	counting	from	streams

– Triangles:	simplest	non-trivial	representation	of	node	clustering
• Regard	as	prototype	for	more	complex	subgraphs	of	interest

• Uniform	sampling	performs	poorly:
– Chance	for	random	sampled	edges	to	form	subgraph	is	≈	0
– Non-uniform	edge	sampling:	preferentially	select	target	subgraphs

• Prior	work	optimizes	subgraph	specific	data	structure
– [Buriol et.	al.	06]:	sample	edges,	assumptions	on	arrival	order
– [Jha et.al.	KDD	2103],	[Pawan et.al.	VLDB	2013]:	
– Focus	e.g.	on	triangles
– Has	the	effect	of	combining	sampling	and	estimation	steps



Disjoining	Sampling	from	Estimation

• Sampling:	
– Selection	of	edges	from	graph	stream

• Estimation:	
– Computation	from	edge	sample	
– Approximate	count	of	subgraph	selections	from	query
– Can	be	done	at	any	time	during	stream

• Don’t	need	to	know	query	selection	when	sampling
• Don’t	maintain	subgraphs	in	storage	during	sampling

– Potential	area	for	resource	trade-off	
• Intermediate	subgraph	storage	vs.	computation	on	the	fly



Graph	Sample	and	Hold
• General	framework	for	sampled	subgraph	counting
• Adaptive	edge	selection:	arriving	edge	i sampled	with	probability	pi

– pi encodes	importance	to	subgraph	queries	in	current	sampled	
topology

• Example:	triangles

• Unbiased	Subgraph	Count	Estimation
– Subgraph	J	sampled	⬄ All	edges	{j	∈J}	sampled
– Horvitz-Thompson	Estimator	1/pJ =	∏j	∈J1/pj for	sampled	subgraphs

• Triangle:	(pqr)-1 Wedge:	(pq)-1	 Edge:	p-1

p q

pp✓
r

q > p: favor 
wedges vs. 
isolated edges

r > q: favor 
triangles vs. 
wedges



Framework	for	Adaptive	Edge	Selection

• L	=	stream	of	edges	{1,	2	,	3,		}
– Ln =	first	n	edges
– L’n =	edges	sampled	from	Ln

• Adaptive	edge	selection
– Conditional	sampling	probabilities

• pn =	Pr[	sample	egde n	|	L’n-1	]	



Framework	for	Subgraph	Estimation
• Edge	sampling	indicator	I(n in	L’n)

– 1	if	n	is	sampled,	0	if	not

• Single	edge	counter
– Sn =	I(n in	L’n)	/	pn

• Unbiasedness
– E[Sn	|	Ln-1 ]	=	1	hence	E[Sn]	=	1

• Subgraph	counter	SJ =	∏j	∈JSj for	J		∋ j1<…<jm

• Unbiased	by	chaining	conditional	expectations
– E[Sj1	…Sjm|Ljm-1]	=	Sj1	…Sj(m-1)



Comparison	with	Previous	Work
• Comparison	to	Streaming-Triangles	[Jha et.	al-KDD’13]

– Metric:	relative	error	on	triangle	count

Table 4: Coverage Probability γ for 95% confidence
interval

graph γNK γNT γNΛ
γα

socfb-CMU 0.94 0.95 0.96 0.92
socfb-UCLA 0.96 0.95 0.95 0.92

socfb-Wisconsin 0.95 0.95 0.96 0.95
web-Stanford 0.97 0.92 0.95 0.92
web-Google 0.95 0.93 0.95 0.95
web-BerkStan 0.96 0.94 0.93 0.93

Table 5: The relative error and sample size of
Jha [25] in comparison to our framework for triangle
count estimation

Jha et al. [25] gSH

graph |N̂T −NT |
NT

SSize |N̂T −NT |
NT

SSize

web-Stanford ≈ 0.07 40K 0.0023 14.8K
web-Google ≈ 0.04 40K 0.0029 25.2K
web-BerkStan ≈ 0.12 40K 0.0063 39.8K

For each p = pi, q = qi, we compute the proportion of samples
in which the actual statistic lies in the confidence interval across
100 independent sampling experiments gSHT (pi, qi). We vary
p, q in the range of 0.005–0.01, and for each possible combination
of p, q (e.g., p = 0.005, q = 0.008), we compute the exact cover-
age probability γ. Table 4 provides the mean coverage probability
with p, q = {0.005, 0.008, 0.01} for all different graphs. Note
γNK , γNT , γNΛ

, and γα indicate the exact coverage probability of
edge, triangle, path length 2 counts, and clustering coefficient re-
spectively. We see that the nominal 95% confidence interval holds
to a good approximation, as γ ≈ 95% across all graphs.

5.3 Comparison to Previous Work
We compare to the most recent research done on triangle count-

ing by Jha et al. [25]. Jha et al. proposed a Streaming-Triangles al-
gorithm to estimate the triangle counts. Their algorithm maintains
two data structures. The first data structure is the edge reservoir
and used to maintain a uniform random sample of edges as they
streamed in. The second data structure is the wedge (path length
two) reservoir and used to select a uniform sample of wedges cre-
ated by the edge reservoir. The algorithm proceeds in a reservoir
sampling fashion as a new edge et is streaming in. Then, edge
et gets the chance to be sampled and replace a previously sam-
pled edge with probability 1/t. Similarly, a randomly selected new
wedge (formed by et) replaces a previously sampled wedge from
the wedge reservoir. Table 5 provides a comparison between our
proposed framework (gSH) and the Streaming-Triangles algorithm
proposed in [25]. Note that we compare with the results reported
in their paper.
From Table 5, we observe that across the three web graphs, our

proposed framework has a relative error orders of magnitude less
than the Streaming-Triangles algorithm proposed in [25], as well
as with a small(er) overhead storage (in most of the graphs). We
note that the work done by Jha et al. [25] compares to other state of
the art algorithms and shows that they are not practical and produce

Table 6: Elapsed time (seconds) for counting edges, triangles, and
paths of len.2

Full Graph Sampled Graph
graph Time Graph size Time SSize
web-Stanford 19.68 1.9M 0.13 14.8K
web-Google 5.05 4.3M 0.55 25.2K
web-BerkStan 113.9 6.6M 1.05 39.8K

a very large error; see Section 6 for more details.

5.4 Effect of p, q on Sampling Rate
While Figure 1 shows that the sampling distribution of the pro-

posed framework is unbiased regardless the choice of p, q, the ques-
tion of what is the effect of the choice of p, q on the sample size
still needs to be explored. In this section, we study the effect of the
choice of parameter settings on the fraction of edges sampled from
the graph.
Figure 2 shows the fraction of sampled edges as we vary p, q in

the range of 0.005–0.1 for twoweb graphs and two social Facebook
graphs. Note that the graphs are ordered by their density (check
Table 2) going from the most sparse to the most dense graph. We
observe that when q ≤ 0.01, regardless the choice of p, the fraction
of sampled edges is in the range of 0.5% – 2.5% of the total number
of edges in the graph. We also observe that as q goes from 0.01 to
0.03, the fraction of sampled edges would be in the range of 2.75%
– 5%. These observations hold for all the graphs we studied.
On the other hand, as q goes from 0.03 to 0.1, the fraction of

sampled edges depends on whether the graph is dense or sparse.
For example, for web-Google graph, as q goes from 0.03 to 0.1, the
fraction of sampled edges goes from 5% to 15%. Also, for web-
Stanford graph, as q goes from 0.03 to 0.1, the fraction of sampled
edges goes from 5% to 25%. Moreover, for the most dense graph
we have in this paper (socfb-CMU), the fraction of sampled edges
goes from 5% to 31%. Note that when we tried q = 1, regardless
the choice of p, at least more than 80% of the edges were sampled.
Since p is the probability of sampling a fresh edge (not adjacent

to a previously sampled edge), one could think of p as the probabil-
ity of random jumps (similar to random walk methods) to explore
unsampled regions in the graph. On the other hand, q is the prob-
ability of sampling an edge adjacent to previous edges. Therefore,
one could think of q as the probability of exploring the neighbor-
hood of previously sampled edges (similar to the forward probabil-
ity in Forest Fire sampling [29]).
From all the discussion above, we conclude that using a small p, q
settings (i.e., ≤ 0.008) is better to control the fraction of sampled
edges, and also recommended since the sampling distribution of
the proposed framework is unbiased regardless the choice of p, q
as we show in Figure 1 (also see Section 2). However, if a tight
confidence interval is needed, then increasing p, q helps reduce the
variance estimates.

5.5 Implementation Issues
In practice, statistical variance estimators are costly to compute. In
this paper, we provide an efficient parallel procedure to compute
the variance estimate. We take triangles as an example. Consider
for example any pair of triangles τ and τ ′, assuming τ and τ ′ are
not identical, the covariance of τ and τ ′ is greater than zero, if and
only if the two triangles are intersecting. Since two intersecting tri-
angles have either one edge in common or are identical, we can find

5%	of	graph	edges
0.6%	of	graph	edges

0.57%	of	graph	edges

92%	- 96%	Improvement	in	relative	error	in	same	storage	

Sample	size

[Ahmed,	Duffield,	Kompella,	Neville,	SIGKDD	2014]



Estimation	Variance
• Horvitz-Thompson	formalism	provides	unbiased	estimates	of	(co)-

variance	of	subgraph	counts
• Cov(S’J ,	S’K)	has	unbiased	estimator

C’(J,K)	=	S’J\K (	S’J∩K	– 1)	S’K\J
– Computable	from	sampled	subgraphs

• Can	approximate	variance	of	rational	combinations	of	counts	using	
the	delta-method
– Global	Clustering	Coefficient	=	3	NT /	N𝝠

• NT =	#{triangles},	N𝝠 =	#{paths	of	length	2}
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Figure 1: Convergence of the estimates (NK , NT , NΛ, α, upper and lower bounds) for socfb-UCLA and socfb-Wisconsin graphs,
for all possible samples with p, q in the range 0.005–0.1. Diamonds (Blue): E(est)

Actual . Circles (Green):
UB

Actual ,
LB

Actual . Square (Gold):
refers to the sample in Table 3. Dashed line (Grey): refers to the sample with sample size = 40K edges
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Figure 2: Sampling Fraction (SSize
m , where SSize is the number of sampled edges) as p, q changes in the range 0.005–0.1 for web-

Google, web-Stanford, socfb-Wisconsin, and socfb-CMU graphs (ordered from sparse→ dense).
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Global Clustering

Actual
Estimated/Actual
Confidence Upper & Lower Bounds 
Sample Size = 40K edges

Dataset:
facebook friendship	graph	at	UCLA	



Summary
• Sampling	as	enabler	for	Big	Data

– Lowers	the	bar	for	resources	via	cost	tradeoffs
• Size,	Speed,	Accuracy

– Selection	of	reference	sample	for	later	subsequent	queries
• Match	sampling	scheme	to	query	targets
• Disjoin	sampling	from	estimation

• Graph	streams
– Really	big	data!

• Real-time	streaming	or	edge	transactional	data	stored	non-graphically

– Selection	of	reference	sample	for	later	subgraph	queries
• Match	sampling	scheme	to	query	subgraph	targets
• Adapt	edge	sampling	probabilities	to	role	in	target	subgraphs

– Improves	trade-off	between	space	and	accuracy


