Adaptive Sampling: From Data Streams to Graph Streams

Nick Duffield Texas A&M University <u>http://nickduffield.net/work</u>

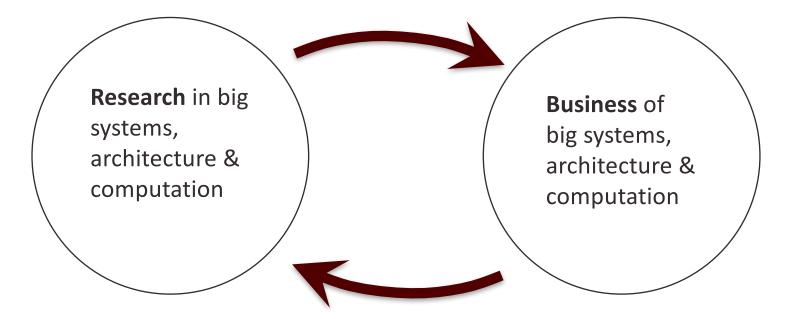
Big Data is Big Business

• Exciting advances in systems, architecture, computation

 Image: Services
 Image: Services

Should research focus on big solutions to big problems?

Does Big Data need Big Systems?



- Ingenious ways of throwing resources at problems
- Are cycles and hardware no longer cost limited?
- Or is this a cycle of resource addiction?

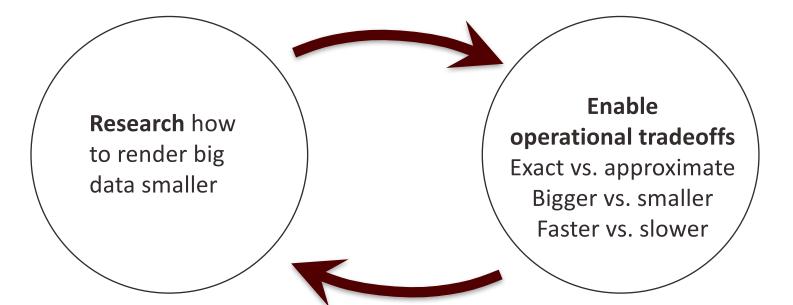
"But I had to grow bigger. So bigger I got"

The Lorax Dr. Suess 1971

"Just because you can, doesn't mean you should"

Popular wisdom

Research Big to Execute Small

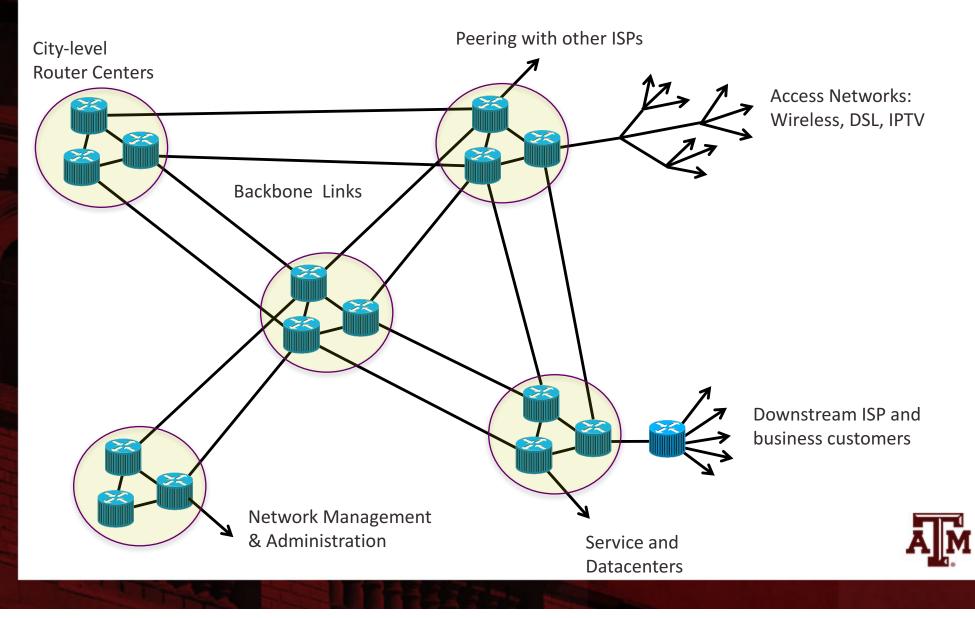


- Often want fast answers to retrospective queries
 - Data-driven automated control, interactive data analysis
- Approximate answers to queries often sufficient
 - Compare with modeling uncertainties, uncontrolled variables
- Experience? ISPs have worked with Big Data at network scale for years:
 - Operational datasets used to manage network over range of timescales
 - capacity planning (months),, detecting network attacks (seconds)

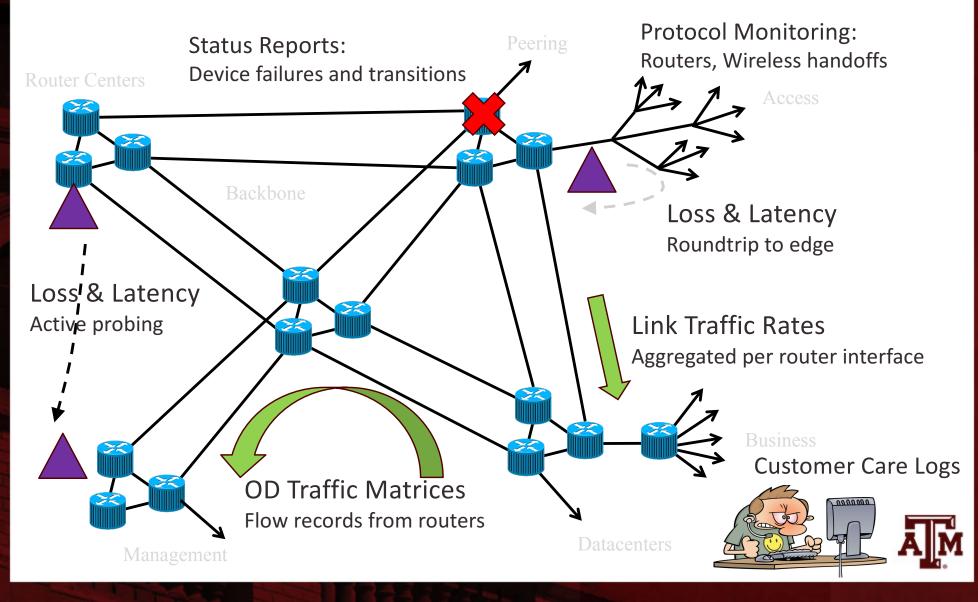
This talk

- Adaptive sampling in data streams
 - Aim: Constructing a reference sample for queries
 - Matching data characteristics to queries
 - Non-uniform sampling for heavy tails
 - Setting: stream sampling in ISP measurements
- Develop approach from graph stream sampling
 - Target queries: subgraph counts
 - Adapt sampling probabilities for arriving edges
 - Depends on role in sampled topology
 - Enhance ability to query target subgraphs

Structure of Large ISP Networks



Operational ISP Network Data



Why Summarize ISP Operational Data?

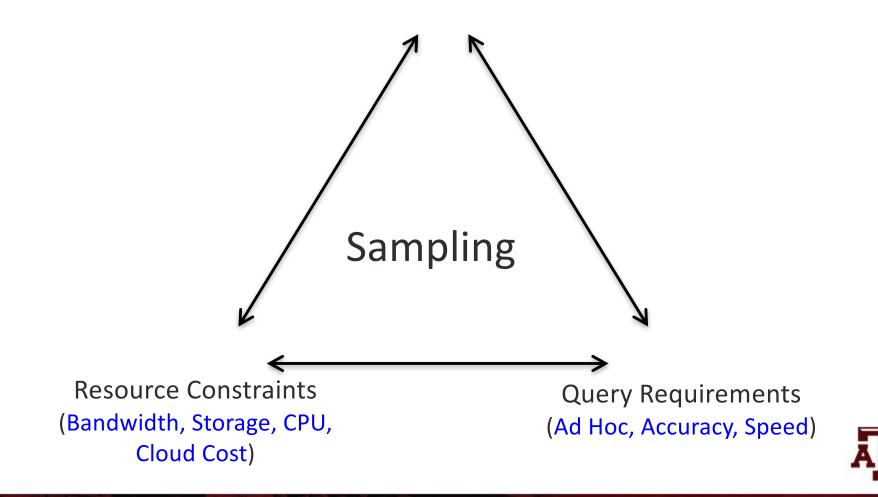
- Limited bandwidth
 - Processing cycles within measurement devices
 - For transmission of data to collectors
- Limited storage
 - Infeasible to accumulate raw data streams over extended periods
- Limited time
 - Need fast query response
 - Infeasible to run exploratory queries over full data

Why Sample?

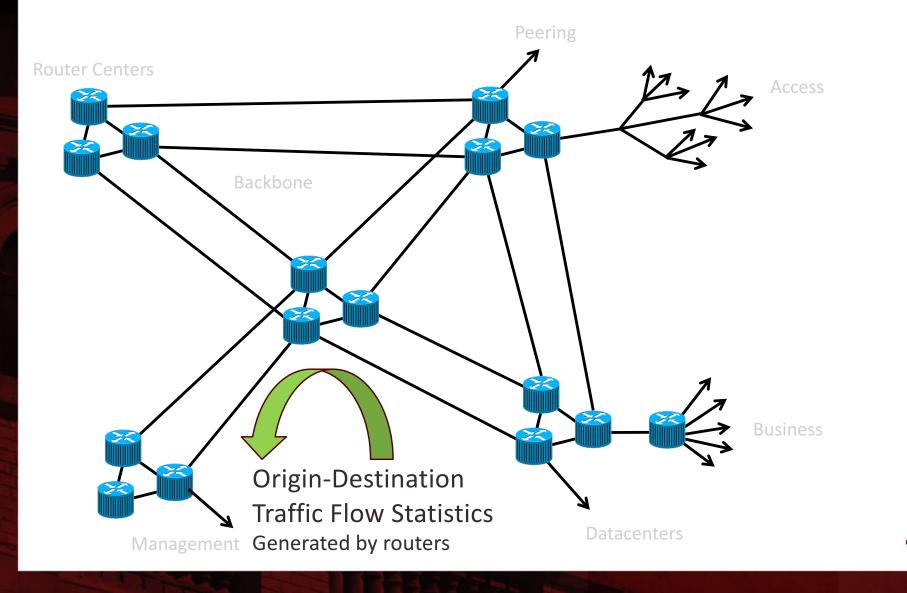
- Sampling has an intuitive semantics
 - We obtain a smaller data set with the same structure
- Estimating on a sample is often straightforward
 - Run the analysis on the sample that you would on the full data
- Futureproof
 - Don't need to know queries at time of sampling
 - "Where/where did that suspicious UDP port first become so active?"
 - "Which is the most active IP address within than anomalous subnet?"
 - Contrast with other types of summary:
 - can't drill down into aggregates

Sampling as a Mediator of Constraints

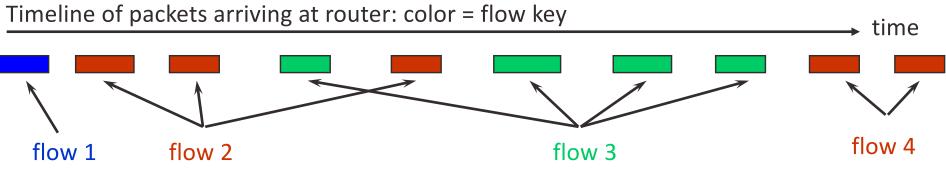
Data Characteristics (Heavy Tails, Correlations)



ISP Data: Traffic Flow Statistics



Flow Records



- IP Flow:
 - Set of packets with common flow key observed close in time
- Flow Key:
 - Origin/Destination IP addresses, TCP/UDP ports of packets in the flow,
- Flow Records:
 - Summaries of flows (key, #packet, #byte, first/last packet time, ...)
 - Continuously compiled by routers, exported to collector
- 10's PetaBytes daily network traffic → 100's TeraBytes flow records
 - Applications
 - Routine: compute time series of aggregates over pre-defined selectors
 - Challenge: real-time detection of botnet victim acquisition, communications, attacks

Abstraction: Keyed Data Streams

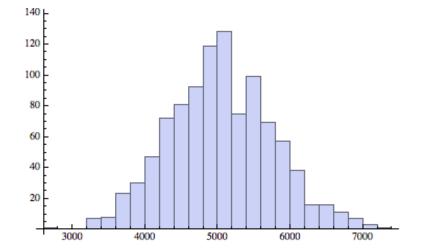
- Data Model: items are keyed weights
 - Item (x,k): Weight x; key k
 - x = flow bytes, k = flow key (common endpoints of packets)
- Stream of keyed weights
 - $\ \{(x_i , k_i): i = 1, 2, ..., n\} \)$
- Generic query: subset sums
 - X(S) = $\Sigma_{i \in S} x_i$ S \subset {1,2,...,n} i.e. total weight of index subset S
 - Typically S = S(K) = $\{i: k_i \in K\}$: items with keys in K
 - X(S(K)) = e.g. total bytes to given IP dst address / port
- Aim:
 - Compute fixed size summary of stream that can be used to estimate arbitrary subset sums with known error bounds

Inclusion Sampling and Estimation

- Horvitz-Thompson (1952)
 - Item i of size x_i is sampled with probability p_i
 - Estimate $x'_i = x_i / p_i$ (if sampled), 0 if not
 - Unbiased: $E[x'_i] = x_i$
- Linearity
 - Estimate of subset sum = sum of corresponding estimates
 - Subset sum X(S)= $\sum_{i \in S} x_i$ has estimate X'(S) = $\sum_{i \in S} x'_i$
 - Query on S: find matching items in sample and sum estimates
- Accuracy
 - Exponential Bounds: $Pr[|X'(S) X(S)| > \delta X(S)] \le e^{-g(\delta)X(S)}$
 - Translate into confidence intervals for X(S)

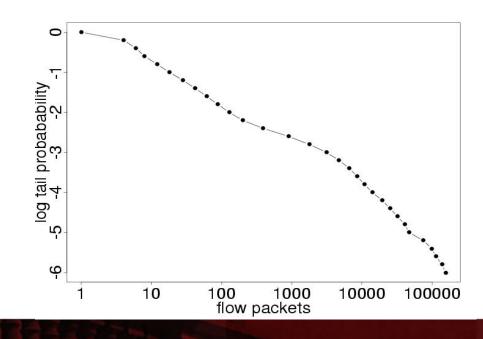
Matching Data to Analysis with Sampling

- Generic problem 1: Counting items: use weight x_i = 1
 - Uniform sampling with probability p works fine
 - Estimated subset count X'(S) = #{samples in S} / p
 - Accuracy?
 - relative variance of X'(S) = (1/p 1)/X(S)
 - given p, get any desired accuracy for large enough S



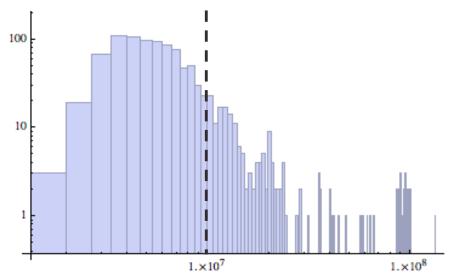
Heavy Tails in the Internet and Beyond

- Heavy tailed distribution
 - E.g. Pareto, $P[X > x] \sim x^{-\alpha}$
 - 80-20 Laws: Small fraction of items have large fraction of weight
- Many examples
 - Degree distributions in web graph, social networks
 - Bytes and packets per network flow
 - Files sizes in storage



Matching Data to Analysis with Sampling

- Generic problem 2: x_i in Pareto distribution
- Uniform sampling?
 - Likely to omit heavy items \Rightarrow big hit on accuracy
 - Making selection set S large doesn't help
- Select m largest items ?
 - biased & smaller items systematically ignored



Sample Cost Optimization

- Independent sampling from n items with weights {x₁,...,x_n}
- Goal: find the "best" sampling probabilities {p₁, ..., p_n}
- Horvitz-Thompson: unbiased estimate of each x_i by

 $x'_{i} = \begin{cases} x_{i}/p_{i} & \text{if weight i selected} \\ 0 & \text{otherwise} \end{cases}$

• Two costs

- 1. Sampling variance from Horvitz-Thompson : $Var(x'_i) = x^2_i (1/p_i 1)$
- 2. Expected Sample Size: $\Sigma_i p_i$
- Minimize Linear Combination Cost: $\Sigma_i (x_i^2(1/p_i-1) + z^2 p_i)$
 - z expresses relative importance of small sample vs. small variance

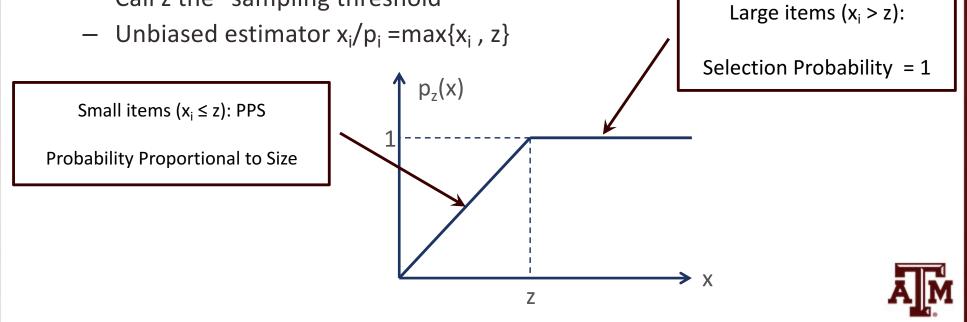
Minimal Cost Sampling

• Minimize

- Cost $\Sigma_i (x_i^2 (1/p_i - 1) + z^2 p_i)$ subject to $1 \ge p_i \ge 0$

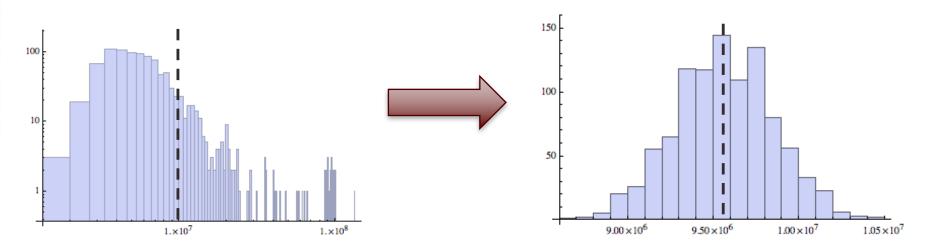
Solution

- IPPS: Inclusion probability proportional to size
- $p_i = p_z(x_i) = min\{1, x_i/z\}$
- Call z the "sampling threshold"



Taming the Heavy Tail

• Distribution of packet count estimates



Uniform sampling

IPPS sampling

Variations on a Theme

- Matching sampling to estimation is versatile approach to sample design
 - Many variations expressing different resource and estimation goals
- Fixed Size Sampling: Reservoir IPPS sampling

[Cohen, Duffield, Lund, Kaplan, Thorup; SODA 2009, SIAM J. Comput. 2011]

- Structure-Aware Sampling
 - Minimize variance only for Range Queries (e.g. IP prefixes)

[Cohen, Cormode, Duffield, PVLDB 2011]

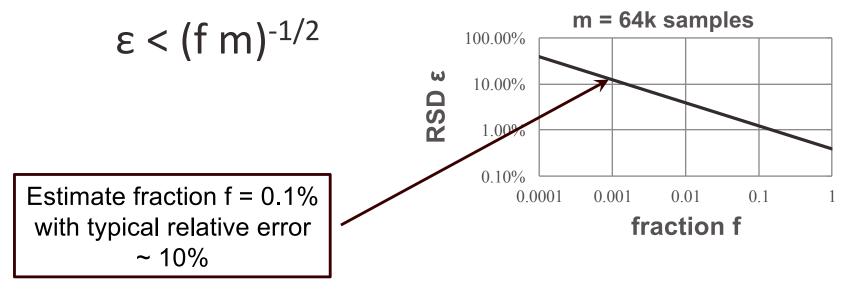
- Fair Sampling over subpopulation streams of different rates
 - Minimizing *Relative* variance of subpopulation subset sums
 [Duffield, Sigmetrics 2012]
- Stable Sampling
 - Minimize churn in sample set

[Cohen, Cormode, Duffield, Lund, TALG 2016]

IPPS sampling & variations used in ISP measurement today

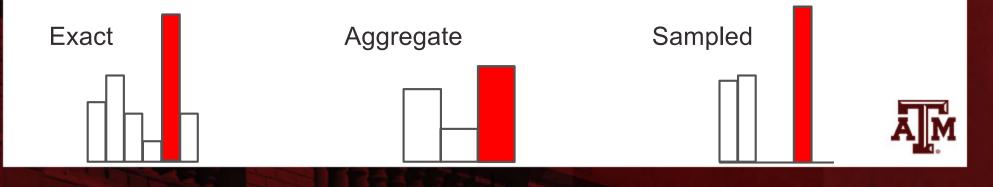
Estimation Accuracy in Practice

- Aim: estimate heavy hitters
 - any subset sum comprising at least some fraction f of total weight
- Suppose: sample size m
- Analysis: typical estimation error ε (relative standard deviation) obeys



Heavy Hitters: Exact vs. Aggregate vs. Sampled

- Sampling does not tell you where the interesting features are
 - But does speed up the ability to find them with existing tools
- Example: Heavy Hitter Detection
 - Setting: Flow records reporting 10GB/s traffic stream
 - Aim: find Heavy Hitters = IP prefixes comprising $\geq 0.1\%$ of traffic
 - Response time needed: 5 minute
- Compare:
 - Exact: 10GB/s x 5 minutes yields upwards of 300M flow records
 - 64k aggregates over 16 bit prefixes: no deeper drill-down possible
 - Sampled: 64k flow records: **any** aggregate $\ge 0.1\%$ accurate to $\sim 10\%$



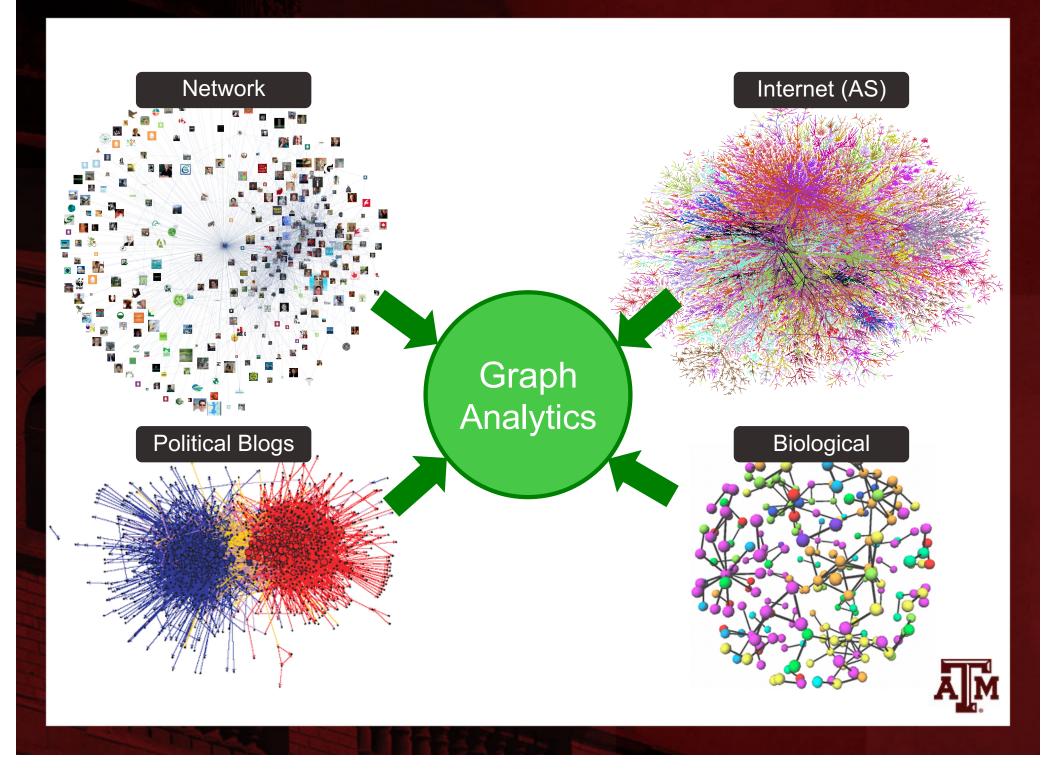
Graphs = Really Big Data

Google Linked in

Operational Graph Data

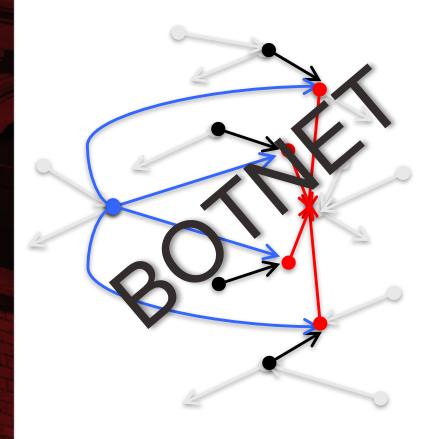
facebook.

- Search providers: web graphs (billions of pages indexed)
- Online social networks:
 - Facebook: ~10⁹ users (nodes), ~10¹² edges (relationships)
- ISPs: communications graphs
 - From flow records: node = IP src/dst, edge if traffic flows between them
- Graph Streaming Data
 - Transactional edge data often not maintained in graphical form
 - Real time streams e.g. flow records, or stored transactions e.g. retail purchases
 - Need to support fast, retrospective queries over multilayer graphs
 - IP communications graph, social networks, external resource graphs
 - Sampling needs to be representative over sets of target query objects
 - nodes, links, paths, subgraphs,...



Example: Streaming ISP Graphs

- Node = IP address
- Directed edge = flow from source node to destination node



→ compromise

- → flooding
- Hard to detect against background
- Known attacks:
 - Signature matching based on partial graphs, flow features, timing
- Unknown attacks:
 - exploratory & retrospective analysis
 - preserve accuracy if sampling?

Streaming Subgraph Estimation

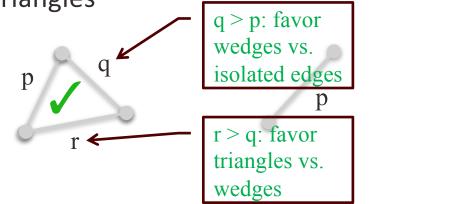
- Hot topic: sample-based subgraph counting from streams
 - Triangles: simplest non-trivial representation of node clustering
 - Regard as prototype for more complex subgraphs of interest
- Uniform sampling performs poorly:
 - Chance for random sampled edges to form subgraph is ≈ 0
 - Non-uniform edge sampling: preferentially select target subgraphs
- Prior work optimizes subgraph specific data structure
 - [Buriol et. al. 06]: sample edges, assumptions on arrival order
 - [Jha et.al. KDD 2103], [Pawan et.al. VLDB 2013]:
 - Focus e.g. on triangles
 - Has the effect of combining sampling and estimation steps

Disjoining Sampling from Estimation

- Sampling:
 - Selection of edges from graph stream
- Estimation:
 - Computation from edge sample
 - Approximate count of subgraph selections from query
 - Can be done at any time during stream
- Don't need to know query selection when sampling
- Don't maintain subgraphs in storage during sampling
 - Potential area for resource trade-off
 - Intermediate subgraph storage vs. computation on the fly

Graph Sample and Hold

- General framework for sampled subgraph counting
- Adaptive edge selection: arriving edge i sampled with probability p_i
 - p_i encodes importance to subgraph queries in current sampled topology
- Example: triangles



- Unbiased Subgraph Count Estimation
 - Subgraph J sampled \Leftrightarrow All edges {j \in J} sampled
 - Horvitz-Thompson Estimator 1/p_J = $\prod_{j \in J} 1/p_j$ for sampled subgraphs
 - Triangle: (pqr)⁻¹ Wedge: (pq)⁻¹ Edge: p⁻¹

p

Framework for Adaptive Edge Selection

- L = stream of edges {1, 2, 3, }
 - $-L_n = first n edges$
 - $-L'_n$ = edges sampled from L_n
- Adaptive edge selection
 - Conditional sampling probabilities
 - p_n = Pr[sample egde n | L'_{n-1}]

Framework for Subgraph Estimation

- Edge sampling indicator I(n in L'_n)
 - 1 if n is sampled, 0 if not
- Single edge counter
 S_n = I(n in L'_n) / p_n
- Unbiasedness
 - $E[S_n | L_{n-1}] = 1 \text{ hence } E[S_n] = 1$
- Subgraph counter $S_J = \prod_{j \in J} S_j$ for $J \ni j_1 < ... < j_m$
- Unbiased by chaining conditional expectations
 E[S_{j1}...S_{jm}|L_{jm-1}] = S_{j1}...S_{j(m-1)}

Comparison with Previous Work

- Comparison to Streaming-Triangles [Jha et. al-KDD'13]
 - Metric: relative error on triangle count

	Jha <i>et al</i> .		gSH		-
graph	$\frac{ \widehat{N}_T - N_T }{N_T}$	SSize	$\frac{ \widehat{N}_T - N_T }{N_T}$	SSize	Sample size
web-Stanford	≈ 0.07	40K	0.0023	14.8K	5% of graph edges
web-Google	≈ 0.04	40K	0.0029	25.2K	0.6% of graph edges
web-BerkStan	≈ 0.12	40K	0.0063	39.8K	0.57% of graph edges

92% - 96% Improvement in relative error in same storage

[Ahmed, Duffield, Kompella, Neville, SIGKDD 2014]

Estimation Variance

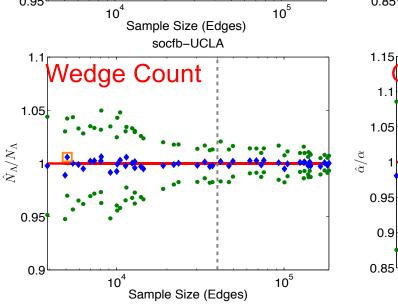
- Horvitz-Thompson formalism provides unbiased estimates of (co)variance of subgraph counts
- Cov(S'_J, S'_K) has unbiased estimator

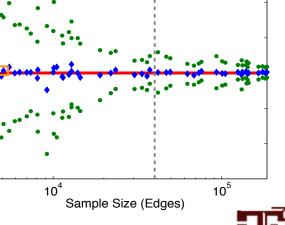
 $C'(J,K) = S'_{J\setminus K} (S'_{J\cap K} - 1) S'_{K\setminus J}$

- Computable from sampled subgraphs
- Can approximate variance of rational combinations of counts using the delta-method
 - Global Clustering Coefficient = $3 N_T / N_A$
 - $N_T = #{triangles}, N_A = #{paths of length 2}$

$$\operatorname{Var}(\widehat{N}_T/\widehat{N}_{\Lambda}) \approx \frac{\operatorname{Var}(\widehat{N}_T)}{\widehat{N}_{\Lambda}^2} + \frac{\widehat{N}_T^2 \operatorname{Var}(\widehat{N}_{\Lambda})}{\widehat{N}_{\Lambda}^4} - 2 \frac{\widehat{N}_T \operatorname{Cov}(\widehat{N}_T, \widehat{N}_{\Lambda})}{\widehat{N}_{\Lambda}^3}$$

Estimated/Actual **Dataset:** Confidence Upper & Lower Bounds facebook friendship graph at UCLA Sample Size = 40K edges socfb_UCLA socfb-UCLA ^{1.05}Edge Count 1.15_r Triangle Count 1.1 Estimated 1.05 Actual \hat{N}_K/N_K \hat{N}_T/N_T 0.95 0.9 0.95 0.85 10⁵ 10^{4}





Sample Size (Edges)

socfb-UCLA

Clustering

Global

Summary

- Sampling as enabler for Big Data
 - Lowers the bar for resources via cost tradeoffs
 - Size, Speed, Accuracy
 - Selection of reference sample for later subsequent queries
 - Match sampling scheme to query targets
 - Disjoin sampling from estimation
- Graph streams
 - Really big data!
 - Real-time streaming or edge transactional data stored non-graphically
 - Selection of reference sample for later subgraph queries
 - Match sampling scheme to query subgraph targets
 - Adapt edge sampling probabilities to role in target subgraphs
 - Improves trade-off between space and accuracy

