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Big Data iIs Big Business

amaZon
webservices™

GraphX

« Should research focus on big solutions to big problems?
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Does Big Data need Big Systems?

Research in big Business of

systems, big systems,
architecture & architecture &

computation computation

—

* |ngenious ways of throwing resources at problems
* Are cycles and hardware no longer cost limited?
* Or is this a cycle of resource addiction?
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“But | had to grow bigger. So bigger | got”

The Lorax
Dr. Suess
1971

“Just because you can, doesn’t mean you should”

Popular wisdom
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Research Big to Execute Small

Enable
operational tradeoffs
Exact vs. approximate

Bigger vs. smaller
Faster vs. slower

Research how
to render big
data smaller

—

Often want fast answers to retrospective queries

Data-driven automated control, interactive data analysis

Approximate answers to queries often sufficient

Compare with modeling uncertainties, uncontrolled variables

Experience? ISPs have worked with Big Data at network scale for years:

Operational datasets used to manage network over range of timescales
* capacity planning (months), ...., detecting network attacks (seconds)



This talk

* Adaptive sampling in data streams
* Aim: Constructing a reference sample for queries

— Matching data characteristics to queries
* Non-uniform sampling for heavy tails
e Setting: stream sampling in ISP measurements

* Develop approach from graph stream sampling
— Target queries: subgraph counts

— Adapt sampling probabilities for arriving edges
 Depends on role in sampled topology
 Enhance ability to query target subgraphs




Structure of Large ISP Networks

City-level Peering with other ISPs

Router Centers

@ Access Networks:
ﬁ Wireless, DSL, IPTV
I
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Downstream ISP and
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Operational ISP Network Data

Status Reports:
Device failures and transitions

&

Loss,'& Latency
Active probing

OD Traffic Matrices

Flow records from routers

Protocol Monitoring:
Routers, Wireless handoffs

Loss & Latency
Roundtrip to edge

Link Traffic Rates

Aggregated per router interface




Why Summarize ISP Operational Data?

* Limited bandwidth
— Processing cycles within measurement devices
— For transmission of data to collectors

* Limited storage

— Infeasible to accumulate raw data streams over
extended periods

* Limited time
— Need fast query response
— Infeasible to run exploratory queries over full data
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Why Sample?
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* Sampling has an intuitive semantics

— We obtain a smaller data set with the same structure

* Estimating on a sample is often straightforward

— Run the analysis on the sample that you would on the full data

e Futureproof

— Don’t need to know queries at time of sampling
e “Where/where did that suspicious UDP port first become so active?”
* “Which is the most active IP address within than anomalous subnet?”

— Contrast with other types of summary:

e can’tdrill down into aggregates
AiiM




Sampling as a Mediator of Constraints

Data Characteristics
(Heavy Tails, Correlations)

Sampling

< >

Resource Constraints Query Requirements
(Bandwidth, Storage, CPU,

(Ad Hoc, Accuracy, Speed)
Cloud Cost) AI'M




ISP Data: Traffic Flow Statistics

Orlgln Destination :
%/ Traffic Flow Statistics

Generated by routers




Flow Records

Timeline of packets arriving at router: color = flow key _ time

flow 1 flow 2 flow 3 flow 4

e |P Flow:

* Set of packets with common flow key observed close in time

 Flow Key:

— Origin/Destination IP addresses, TCP/UDP ports of packets in the flow,
* Flow Records:

— Summaries of flows (key, #packet, #byte, first/last packet time, ...)

— Continuously compiled by routers, exported to collector

e 10’s PetaBytes daily network traffic = 100’s TeraBytes flow records

— Applications

* Routine: compute time series of aggregates over pre-defined selectors
Challenge: real-time detection of botnet victim acquisition, communications, attacks A' M




Abstraction: Keyed Data Streams

Data Model: items are keyed weights
— Item (x,k): Weight x; key k
* x=flow bytes, k = flow key (common endpoints of packets)

Stream of keyed weights
— {(x,k):i=1,2,..,n})

Generic query: subset sums
— X(S)=Zsxi Sc{1,2,..,n}i.e. total weight of index subset S

— Typically S = S(K) = {i: k; € K} : items with keys in K
* X(S(K)) = e.g. total bytes to given IP dst address / port

Aim:

— Compute fixed size summary of stream that can be used to estimate arbitrary

subset sums with known error bounds
AiiM




Inclusion Sampling and Estimation

* Horvitz-Thompson (1952)
— Item i of size x; is sampled with probability p;
— Estimate x’;= x; / p; (if sampled), O if not
— Unbiased: E[x";] = x;
* Linearity
— Estimate of subset sum = sum of corresponding estimates
— Subset sum X(S)= X, _c X; has estimate X'(S) = X, ¢ X’
* Query on S: find matching items in sample and sum estimates
* Accuracy
— Exponential Bounds: Pr[ |X’(S) - X(S)| > 6X(S) ] £ e8(d)X()
— Translate into confidence intervals for X(S)
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Matching Data to Analysis with Sampling

Generic problem 1: Counting items: use weight x; = 1
— Uniform sampling with probability p works fine
— Estimated subset count X’(S) = #{samples in S} / p

— Accuracy?
— relative variance of X’(S) = (1/p -1)/X(S)

— given p, get any desired accuracy for large enough S

1
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Heavy Tails in the Internet and Beyond

 Heavy tailed distribution

— E.g. Pareto, P[X> x] ~ x©

— 80-20 Laws: Small fraction of items have large fraction of weight
* Many examples

— Degree distributions in web graph, social networks

— Bytes and packets per network flow

— Files sizes in storage

log tail probabability
%4 3 -2 -

-

-6
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flow packets




Matching Data to Analysis with Sampling

* Generic problem 2: x; in Pareto distribution
e Uniform sampling?
— Likely to omit heavy items = big hit on accuracy

— Making selection set S large doesn’t help

e Select m largest items ?

— biased & smaller items systematically ignored

100}




Sample Cost Optimization

Independent sampling from n items with weights {xy,... ,X,,}

Goal: find the “best” sampling probabilities {p4, ... ,pn}

Horvitz-Thompson: unbiased estimate of each x; by

" _{ x./p, if weight i selected

otherwise

Two costs
1. Sampling variance from Horvitz-Thompson : Var(x’)) = x (1/p; — 1)

2. Expected Sample Size: Xip;

Minimize Linear Combination Cost: = (x;2(1/p;—1) + 2% p)
AiiM

— z expresses relative importance of small sample vs. small variance




Minimal Cost Sampling

Minimize

— CostZ.(x2 (1/p;— 1) +2z%2p;) subjectto1>p, >0
Solution

— IPPS: Inclusion probability proportional to size

Pi = P,(x;) = min{1, x; /z}
Call z the “sampling threshold”

. _ Large items (x; > z):
Unbiased estimator x;/p; =max{x; , z}

Selection Probability =1

Small items (x; < z): PPS

1
Probability Proportional to Size \




Taming the Heavy Tail

* Distribution of packet count estimates
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Variations on a Theme

Matching sampling to estimation is versatile approach to sample design

— Many variations expressing different resource and estimation goals
Fixed Size Sampling: Reservoir IPPS sampling
[Cohen, Duffield, Lund, Kaplan, Thorup; SODA 2009, SIAM J. Comput. 2011]
Structure-Aware Sampling
— Minimize variance only for Range Queries (e.g. IP prefixes)
[Cohen, Cormode, Duffield, PVLDB 2011]
Fair Sampling over subpopulation streams of different rates
— Minimizing Relative variance of subpopulation subset sums

[Duffield, Sigmetrics 2012]
Stable Sampling

— Minimize churn in sample set
[Cohen, Cormode, Duffield, Lund, TALG 2016]

IPPS sampling & variations used in ISP measurement today

T




Estimation Accuracy in Practice

 Aim: estimate heavy hitters

— any subset sum comprising at least some fraction f of total weight

 Suppose: sample size m

e Analysis: typical estimation error € (relative standard deviation) obeys

e < (f m)1/2

Estimate fraction f = 0.1%
with typical relative error
~10%

m =

64k samples

100.00%

o

10.00% >

\\

0.10%
0.0001 0.001 0.01

fraction f




Heavy Hitters: Exact vs. Aggregate vs. Sampled

« Sampling does not tell you where the interesting features are
— But does speed up the ability to find them with existing tools

e Example: Heavy Hitter Detection
— Setting: Flow records reporting 10GB/s traffic stream
— Aim: find Heavy Hitters = IP prefixes comprising 2 0.1% of traffic
— Response time needed: 5 minute
* Compare:
— Exact: 10GB/s x 5 minutes yields upwards of 300M flow records
— 64k aggregates over 16 bit prefixes: no deeper drill-down possible
— Sampled: 64k flow records: any aggregate > 0.1% accurate to ~10%

Exact Aggregate Sampled




Graphs = Really Big Data
facebook , Google Linked [}

e Operational Graph Data
— Search providers: web graphs (billions of pages indexed)
— Online social networks:

* Facebook: ~10° users (nodes), ~1012 edges (relationships)
— ISPs: communications graphs

* From flow records: node = IP src/dst, edge if traffic flows between them

 Graph Streaming Data

— Transactional edge data often not maintained in graphical form
* Real time streams e.g. flow records, or stored transactions e.g. retail purchases

— Need to support fast, retrospective queries over multilayer graphs

* I[P communications graph, social networks, external resource graphs

— Sampling needs to be representative over sets of target query objects

* nodes, links, paths, subgraphes,...
A|M




Graph
Analytics




Example: Streaming ISP Graphs

* Node =IP address

* Directed edge = flow from source node to destination node
&———> compromise
&——> control

&——> flooding

e Hard to detect against background
« e Known attacks:

— Signature matching based on partial graphs,
flow features, timing

e Unknown attacks:

— exploratory & retrospective analysis
— preserve accuracy if sampling?

T




Streaming Subgraph Estimation

* Hot topic: sample-based subgraph counting from streams
— Triangles: simplest non-trivial representation of node clustering

* Regard as prototype for more complex subgraphs of interest

e Uniform sampling performs poorly:
— Chance for random sampled edges to form subgraphis =0

— Non-uniform edge sampling: preferentially select target subgraphs

* Prior work optimizes subgraph specific data structure
[Buriol et. al. 06]: sample edges, assumptions on arrival order
[Jha et.al. KDD 2103], [Pawan et.al. VLDB 2013]:

Focus e.g. on triangles
Has the effect of combining sampling and estimation steps




Disjoining Sampling from Estimation

Sampling:

— Selection of edges from graph stream

Estimation:

— Computation from edge sample

— Approximate count of subgraph selections from query
— Can be done at any time during stream
Don’t need to know query selection when sampling

Don’t maintain subgraphs in storage during sampling
— Potential area for resource trade-off

* Intermediate subgraph storage vs. computation on the fly

T




Graph Sample and Hold

General framework for sampled subgraph counting
Adaptive edge selection: arriving edge i sampled with probability p;
— p; encodes importance to subgraph queries in current sampled
topology
Example: triangles
q > p: favor
/ / wedges vs.
P q isolated edges
e P
r e—— | r>q: favor
triangles vs.

wedges
Unbiased Subgraph Count Estimation
— Subgraph J sampled < All edges {j €J} sampled

— Horvitz-Thompson Estimator 1/p, = TT; <,1/p; for sampled subgraphs

e Triangle: (pqr)! Wedge: (pq)! Edge:p™
AiiM




Framework for Adaptive Edge Selection

L =stream of edges {1, 2, 3, }
— L, = first n edges
— L', = edges sampled from L,

* Adaptive edge selection

— Conditional sampling probabilities
* p,=Pr[sampleegden | U, ]




Framework for Subgraph Estimation

Edge sampling indicator I(nin L)
— 1ifnissampled, O if not

Single edge counter
— S,=Il(ninl’,) / p,

Unbiasedness
— E[S, | L,.;]1=1henceE[S,]=1

Subgraph counter S; = T]; ¢ S; for ) 3 ji<...<j,

Unbiased by chaining conditional expectations
- E[SJ]_ Sjm | ij_]_] - Sjl ---Sj(m—l)




Comparison with Previous Work

 Comparison to Streaming-Triangles [Jha et. al-KDD’13]

— Metric: relative error on triangle count

Jha et al. gSH

graph SeNel  ggiye [N2=Nol (ggi.c  Sample size )

web-Stanford ~ 0.07 40K 0.0023 14.8K 5% of graph edges

web-Google ~ 0.04 40K 0.0029 25.2K 0.6% of graph edges
web-BerkStan =~ 0.12 40K 0.0063 \39.8K 0.57% of graph edges /

92% - 96% Improvement in relative error in same storage

[Ahmed, Duffield, Kompella, Neville, SIGKDD 2014]
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Estimation Variance

Horvitz-Thompson formalism provides unbiased estimates of (co)-
variance of subgraph counts
Cov(S’;, S’¢) has unbiased estimator
C’(J,K) = S'J\K (S)nk—1) S'K\J
— Computable from sampled subgraphs
Can approximate variance of rational combinations of counts using
the delta-method

— Global Clustering Coefficient = 3 N1/ N,
* N;=#{triangles}, N, = #{paths of length 2}

Var(Nr) N N2 Var(Ny)
N3 Ni

V&I‘(NT/[\?A) ~




Estimated/Actual

Confidence Upper & Lower Bounds
Sample Size = 40K edges

socfb=lICI

Estimated
Actual

1.05

Dataset:
facebook friendship graph at UCLA

Edge Count

Sample Size (Edges)
socfb—-UCLA

"Wedge Count

°
° °..'0 .. :‘s

Sample Size (Edges)

socfb—UCLA

“Triangle Count:

Sample Size (Edges)
socfb—-UCLA
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Summary

 Sampling as enabler for Big Data
— Lowers the bar for resources via cost tradeoffs
* Size, Speed, Accuracy

— Selection of reference sample for later subsequent queries
* Match sampling scheme to query targets
* Disjoin sampling from estimation

* Graph streams
— Really big data!
* Real-time streaming or edge transactional data stored non-graphically

— Selection of reference sample for later subgraph queries
* Match sampling scheme to query subgraph targets
* Adapt edge sampling probabilities to role in target subgraphs

— Improves trade-off between space and accuracy




