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Overview

 What is MRF-based image segmentation?
. Why is it a challenging and relevant problem?

- Distributed-memory parallel MRF-based image
segmentation algorithm

- How well does it perform on modern platforms?
- How can we improve it in the future?




Image Segmentation for Material Science

o Study the properties of material samples by
identifying different phases

e Asset 3D architecture of materials

e Challenges: amount of data, broad variety of sensors,
specific characteristics of the image data

e Current single socket approaches unable to
accommodate growing data sizes

e Our approach: Markov Random Field model with
graph partitioning for parallelization through MPI




Markov Random Fields (MRF)

 MRF algorithms are accurate and capable of parallelizing
- Use raw image and oversegmented image

- Problem: application to large data unfeasible due to NP-hard
complexity

- Use graph partitioning to assist in making problem parallelizable




Markov Random Fields for Image
Segmentation

» Given an image represented by

IS a region

o Goal: configuration of labels
X = (21,...,2N) wherex; € L
and L is the set of all possible
labels, L = {0,1,2,... , M}

» MAP criterion: find a labeling that
satisfies:

x* = argmin{U(y|x,0) + U(x)}




Markov Random Fields for Image
Segmentation
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MPI - Parallel Markov Random Fields
(MPI-PMRF)

Algorithm 1 Distributed memory version of the
Markov Random Field algorithm using graph parti-
tioning and parameter estimation (MPI-PMRF). Line 8
is run in parallel to distribute the largest amount of
work to increase performance.

Input: Original image, oversegmentation, number of classes
Output Segmented image and estimated parameters
: K <= number of classes
Initialize parameters and initial labels randomly
Create graph from oversegmentation
for each Expectation Maximization iteration do

Divide graph into subgraphs (cliques) based on number of
MPI processes to be used

Distribute cliques to MPI processes

for each non-zero clique of the graph do

Run Expectation Maximization and Maximum a Posteriori

optimizations on assigned MPI processes

NS

9: end for
10: Gather parameter estimation information for subgraphs
11: Update parameters
12: end for

13: Generate resulting output image
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Experiments Overview

 Types of Experiments
- Verification testing
- Performance testing
« Scaling characteristics
. 2 datasets
- Large-scale platform

(a) Result from threaded
version; (b) Result from MPI-
PMRF

Results are identical




Computation Verification
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(a) 3D rendering of original synthetic data

(b) 3D rendering of MPI-PMRF result

(a) 3D rendering of original experimental data

(b) 3D rendering of MPI-PMRF result




Performance Analysis

e Platform
- Edison supercomputer at NERSC
- Cray XC30 system
- 24 cores per node
- Methodology
- Run 2 datasets
- Varying levels of concurrency
- Scalability study
- Additional performance metrics
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When measuring runtime (in seconds) of the synthetic dataset, the results show the overall decrease in runtime as
concurrency increases
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Results — Efficiency and Rate

o Use “efficiency” and “rate”
metrics to yield insight into

scaling performance Efficiency

« Efficiency: measure degree to E(n, p) = C*(n)
which code scales compared to P C(n,p)
serialized version

 Rate: measure degree to which Rate
performance time increases as n
function of workload size and R(n, p) = T(n,p)
concurrency

* Measuring workload imbalance?

S ., i
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2015. BERKELEY LAB




Synthetic Dataset

1
.75 1
g
: (a)
p 3
- (a) Efficiency of the synthetic dataset; does
- - not follow ideal efficiency of 1, but still
: e provides an increase in performance
s ; : L , (b) Rate of the synthetic dataset does not
3 4 17 24 a8 o6 192 34 TGE . .
Mumber Processes follow ideal rate with a slope equal to 1,
L but provides a performance increase at
i ; different concurrencies and executes
faster than when running in serial
w0
200 (b)
=
o Insutficient workload
Workload imbalance
. _ _ Communication
1 2 4 12 24 43 e 152 384 TES

Mumber Processes

22




Experimental Dataset
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Summary of Results

 MPI-PMRF shows decrease in runtime as concurrency
Increases
« Limits to efficiently scaling:
-Workload imbalance
- Serialization due to inter-processor communication
- Insufficient workload
 Future work
-Increase problem size and complexity
-Workload balance
- Extend algorithm to work with 3D image volumes




Conclusion

* Promising new approach for scalable image
segmentation to help meet scientific needs

« Take advantage of large computational resources and
process large data

« Additional work needed to improve performance
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