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Data network
G=(V,E)

V = users
E = friendships
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Gender?
Married?
Politics?
Religion?

Data network
G=(V,E)

V = users
E = friendships



Attributed network
G = (Vv E)

V = users
E = friendships



G=(V,FE)
V = users
E = friendships



For prediction: estimate joint distribution of class labels (Y) over network



Probabilistic modeling: Learn set of models templates and use
joint Inference to combine together to make predictions
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[ ocal conditional

Local component:

any model to predict class
label based on neighbor
class/attribute values



Probabilistic modeling: Learn set of models templates and use
joint iInference to combine together to make predictions

Naive Bayes:

P(YilN)) < || P(Y;|Yi)P(Y)
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Local component: Logistic regression:

any model to predict class P(Y;|N;) = !
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Probabilistic modeling: Learn set of models templates and use
joint iInference to combine together to make predictions
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Probabilistic modeling: Learn set of models templates and use
joint iInference to combine together to make predictions
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Model template Data network

Model is produced by “rolling out” templates over
relational structure in data network



Probabilistic modeling: Learn set of models templates and use
joint Inference to combine together to make predictions



Probabilistic modeling: Learn set of models templates and use
joint Inference to combine together to make predictions

Model graph



Probabilistic modeling: Learn set of models templates and use
joint Inference to combine together to make predictions
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Probabilistic modeling: Learn set of models templates and use
joint iInference to combine together to make predictions

Learn joint model via optimization, tying parameters across templates

P(yclxa) = Z(6’1XG) H H Pr(xc,yc;0r)

TeT CeC(T(Q))




Probabilistic modeling: Learn set of models templates and use
joint iInference to combine together to make predictions
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How do we estimate over a partially labeled graph®

Partially labeled network (G)



How do we estimate over a partially labeled graph®

Pseudolikelihood (G)

Approach 1:
ignore unlabeled network during learning




How do we estimate over a partially labeled graph®

Partially labeled network (G)

Approach 1:

ignore unlabeled network during learning

Pseudolikelihood (G)

Approach 2: semi-supervisedq,

Composite Likelihood (G)

use unlabeled only as features of labeled




Make predictions using collective inference
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? Small world graph
& [abeled nodes: 30%
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Make predictions using collective inference

Inference method:

any approximate inference
e.g., Gibbs sampling, loopy
BP, variational inference
Note: observed labels seed
Inference process
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Make predictions using collective inference

Inference method:

any approximate inference
e.g., Gibbs sampling, loopy
BP, variational inference
Note: observed labels seed
Inference process
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Can neural networks improve semi-supervised collective inference”?



Semi-supervised relational deep learning



Semi-supervised relational deep learning

* Jo learn with partially labeled network, use semi-supervised collective classification
* Use relational EM for estimation over full network

* Recall that joint relational model = set of local conditional models + joint inference
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Semi-supervised relational deep learning

* Jo learn with partially labeled network, use semi-supervised collective classification
* Use relational EM for estimation over full network
* Recall that joint relational model = set of local conditional models + joint inference

* Previous conditionals: decision trees, regression models, naive Bayes, etc.

* Can neural networks be used to learn better local conditional”?
Need a permutation-invariant vector representation for heterogeneous graphs

* Represent set of neighbors as a sequence, in random order LSTM

 To deal with heterogenous inputs (i.e., varying number of
neighbors), use a recurrent neural network (e.g., LSTM) A

Model template




Network instance Iin partially labeled graph
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red = target node
blue = neighbors
grey = labeled

white = unlabeled




Network instance In partially labeled graph red = target node

blue = neighbors
grey = labeled
white = unlabeled

O 0 0 0O 0 O



Network instance in partially labeled graph red = target node

blue = neighbors
grey = labeled
white = unlabeled

O 0 0 0O 0O

[ fo, )] [ fer ve] [ fi, il gt [ fa> Ya] fa, 94 Y]



Deep collective inference (DCI) woore & N AAAI17)

®
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Deep collective inference (DCI) woore & N AAAI17)

~(te—1 |
» For node V;, and current iteration tc, the input Is node features concatenated with previous prediction [f is yf )] and neighbor
features concatenated with predictions/labels {|f;, (y,; or gj(.tc_l))] v, € N}

®
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Deep collective inference (DCI) moore & N AAAI17)

~(te—1 |
» For node v;, and current iteration tc, the input Is node features concatenated with previous prediction [f is yf )] and neighbor
features concatenated with predictions/labels {|f;, (y; or g)j(.tc_l))] v, € N}

®

' Xy = [< fb,)?g"g, <fe,ye >, <fi,yi>, <ff,§/;t§), <fa,ya>, <fd,§/g°-1>)]

o) (1) @2 OB .4 (5
= [Xd’ Xar Xqy Xq5 Xy Xd]

O

« Learn LSTM conditional with relational EM. Key design choices:
- Initialize label predictions with non-collective relational model
- Randomize neighbor order on every iteration

- Correct for imbalanced classes, either by balancing the objective function or by balancing the data with augmentation



Evaluation shows that neural network (DCI) can produce better
conditionals, If objective is designed carefully
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Predicting sulbgraphs in evolving heterogeneous graphs



Predicting subgraph evolution over time



Predicting subgraph evolution over time

- Task: Predict topology and/or label evolution of subgraphs

- E.g., from observed subgraphs in Gi=2017 t0 Gi=2o1s,
predict their evolution in Gi=2019

- Challenges: How to incorporate subgraph dependencies in a

tractable way”? How to represent data such that it is invariant to
graph isomorphisms®?

» Nalve approach: adapt existing graph prediction methods
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Predicting subgraph evolution over time

- Task: Predict topology and/or label evolution of subgraphs

- E.g., from observed subgraphs in Gi=2017 t0 Gi=2o1s,
predict their evolution in Gi=2019

- Challenges: How to incorporate subgraph dependencies in a

tractable way”? How to represent data such that it is invariant to
graph isomorphisms®?

» Nalve approach: adapt existing graph prediction methods

» Use link prediction methods to independently predict
multiple links (doesn’t learn jointly)

» Use graph classification methods for subgraph prediction
(doesn’t consider context around subgraph)

G in 2017 G in 2018

""""a

¢
(Embed
G in 2018 G in 2019
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Subgraph Pattern Neural Network (veng, Mouli, Ribeiro, and N AAAI18)




Subgraph Pattern Neural Network (veng, Mouli, Ribeiro, and N AAAI18)

* Problem formulation:

* Use induced labeled subgraph patterns to map from set of
nodes in one time step to next

* Learn subgraph embedding for joint edge-node-attribute
predictions

* Examples drawn from larger connected subgraphs
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Subgraph Pattern Neural Network (veng, Mouli, Ribeiro, and N AAAI18)

* Problem formulation:

* Use induced labeled subgraph patterns to map from set of
nodes in one time step to next

* Learn subgraph embedding for joint edge-node-attribute
predictions

* Examples drawn from larger connected subgraphs

« Our model (SPNN):

* |nput features are local induced isomorphism densities within
a radius d of example

- Neural network architecture represents high-order network
structures in local neighborhood
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Subgraph Pattern Neural Network (veng, Mouli, Ribeiro, and N AAAI18)

* Problem formulation:

* Use induced labeled subgraph patterns to map from set of
nodes in one time step to next

* Learn subgraph embedding for joint edge-node-attribute
predictions

* Examples drawn from larger connected subgraphs

« Our model (SPNN):

* |nput features are local induced isomorphism densities within
a radius d of example

» Neural network architecture represents high-order network
structures in local neighborhood @
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Subgraph Pattern Neural Network (veng, Mouli, Ribeiro, and N AAAI18)

* Problem formulation:

* Use induced labeled subgraph patterns to map from set of
nodes in one time step to next

* Learn subgraph embedding for joint edge-node-attribute
predictions

* Examples drawn from larger connected subgraphs
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* |nput features are local induced isomorphism densities within
a radius d of example

« Our model (SPNN): >

» Neural network architecture represents high-order network
structures in local neighborhood @
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Subgraph Pattern Neural Network (veng, Mouli, Ribeiro, and N AAAI18)

- SPNN is a 3-layer gated neural network

* The pattern layer is a set of neurons, each neuron
corresponds to one subgraph pattern

* Sparse structure generated from the training data in a pre-
processing step (i.e., only existing patterns are included)

* Each input feature is only connected to their corresponding
neuron according to graph topology
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- SPNN is a 3-layer gated neural network

| Output: class labels
* The pattern layer is a set of neurons, each neuron Gate: Update only if ) ’ } through Softmax
corresponds to one subgraph pattern pattern exists

* Sparse structure generated from the training data in a pre-

processing step (i.e., only existing patterns are included) Pattern Layer:
graph patterns
» Each input feature is only connected to their corresponding that could have

output pattern

Input features:
Pooled local induced

neuron according to graph topology
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densities of
graph embeddings
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- SPNN is a 3-layer gated neural network
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Experimental Results

- Subgraph prediction

Jointly Trained Multi-Link Task
. Datasets. Edgelnfo PCRW PC N2V Rescal HolE Patchy GraphNNj SPNN
0.830 0.782 0.788 0.582 0.611 0.690 0.627 0.571

DBLP: scientific papers in four related DBLP

: +0.007 +£0.007 =0.014 +=0.007 +=0.025 =+0.024 =+0.003 =+0.021
areas with 14k papers, 14k authors, 8k~ AUC Friendster ~ 0.502  0.516 0515 0.524 0.502 0506 0519 0.521
topics, and 20 venues score (Activity) +0.007  40.012 40.012 +0.018 +0.012 +0.013 +0.010  +0.023
Friendster: 14 mi”ions USers with Friendster 0.501 0.502 0.552 0.540 0.521 0.530 0.547 0.523

hometown CO”ege iNnterests. and 75 (Structure) +0.004  £0.002 £0.019 £0.017 +0.017 +£0.021 +=0.025 £0.019

million messages between users
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Improved subgraph prediction accuracy ROC @ B s @ v S A
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Experimental Results

- Subgraph prediction
Jointly Trained Multi-Link Task

. Datasets. EdgeInfo PCRW PC N2V Rescal HolE Patchy GraphNNj SPNN
DBLP: scientific papers in four relatec Carp 0830 0782 0788 0582 0611 0690 0627 0.57]
: +0.007  £0.007 £0.014 £0.007 +0.025 =+0.024 +0.003  £0.021
areas with 14k papers, 14k authors, 8k AUC Friendster 0502 0516 0.515 0.524 0502 0.506 0519 0.521
topics, and 20 venues score (Activity) 40007 0012 0012 £0.018 +0.012 +0.013 £0.010  0.023

Friendster: 14 millions users with Friendster ~ 0.501 0502 0.552 0.540 0.521 0.530 0.547 0.523

hometown College interests. and 75 (Structure) +0.004  £0.002 +0.019 +0.017 £0.017 £0.021 +£0.025 =+0.019
million messages bet rnnn 1ienve
Pattern weights explain predictions

» Results. DBLP Dataset — — — — missing link  observed link
T A, SRS AR
3 Fr\  \ Fg\ X Fy F FA RN Fo, L F¢! F F5)
Activity Level Predict HOmOIMC OO S OO R ORI O OBMOH ORO S OBEO a OBIO O
dissolution 1.4 ] - _ -
< Predicts existence of joint links (Wl(Q) _WQ(Q)) Predicts absence of joint links iﬂ W




Translational embeddings using message content



| earning translational social relation embeddings



| earning translational social relation embeddings

« Task: Learn explicit relationship representation between users in social networks
- Perform link prediction through vector composition

- Recommend friends directly via relationship types
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| earning translational social relation embeddings

« Task: Learn explicit relationship representation between users in social networks
Perform link prediction through vector composition

Recommend friends directly via relationship types

- Motivation:
Word2Vec (Mikolov et al '13) uses vector arithmetic to encode word analogies

- E.g. King - Man + Woman = Queen

-

-
-
-
-
-
-
-
-
-
-
-
-

Vector
Composition



L earning translational social relation embeddings

« Task: Learn explicit relationship representation between users in social networks
Perform link prediction through vector composition

Recommend friends directly via relationship types

 Motivation:

Word2Vec (Mikolov et al '13) uses vector arithmetic to encode word analogies

- E.g. King - Man + Woman = Queen

- Goal:
Learn edge representation explicitly
- Consider multiple relationships between pair of users

- Consider textual interactions between pair of users



Conversation-based factors

» [Jextual communication reflects the degree of affinity and intensity
of interaction between ui and u;




Conversation-based factors

“Purdue Football BoilerUp”
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Conversation-based factors

» [Jextual communication reflects the degree of affinity and intensity
of interaction between ui and u;

“The coach suggests...”
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 Textual communication reflects the degree of affinity and intensity
of interaction between ui and u

Signal of pair’s
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» [Jextual communication reflects the degree of affinity and intensity
of interaction between ui and u
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relationship

- Conversation Similarity Factor ( p"ij)
» Capture textual similarity of interaction

* |dentify most representative set of words as dictionary W, for each
relationr e R

* Based on W, transform conversations ui-> u; and u;-> ui to relevant word vectors and then compute the
similarity
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* Represent the strength of interaction

- Based on W, see if ui communicates more with u;, on topics relevant to relation r



Conversation-based factors

» [Jextual communication reflects the degree of affinity and intensity
of interaction between ui and u

Signal of pair’s
relationship

- Conversation Similarity Factor ( prij)

- Capture textual similarity of interaction : w
Higher prijmeans pair’s
* |dentify most representative set of words as dictionary W, for each discussion is more relevant to r
relation r e R

* Based on W, transform conversations ui-> u; and u;-> ui to relevant word vectors and then compute the
similarity

- Conversation Frequency Factor ( @rij) Higher @ indicates pair have

* Represent the strength of interaction stronger interaction wrt r

- Based on W, see if ui communicates more with u;, on topics relevant to relation r



Trans-Conv Relational EMbeddings (Lai, N, and Goldwasser AAAI'19)
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Trans-Conv Relational EMbeddings (Lai, N, and Goldwasser AAAI'19)

U1 r1
o -
I christian

N

Example:

U7 and uzhave two relationships in data:
( U1, Fsenior to, U2), ( U1, Fchristian , U2)-

e But us and u2 discussion focuses more
on christian topics than senior_to topics

e (Conversational factors capture this to
indicate which relation is stronger




Trans-Conv Relational EMbeddings (Lai, N, and Goldwasser AAAI'19)

A

Example:

U7 and uzhave two relationships in data:
( U1, Fsenior to, U2), ( U1, Fchristian , U2)-

e But us and u2 discussion focuses more
on christian topics than senior_to topics

e (Conversational factors capture this to
indicate which relation is stronger

e |[earn embeddings jointly with relation-
specific hyperplanes

I christian

e Score function fr measures the plausibility
that the triplet (ui, r, u;) is incorrect

fe(ui ug) = Itap;+(1—a)op|| |t L +7 =15 1|1,

S

conversational factors
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improves prediction accuracy
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Experimental Results

» Link prediction

* Using conversational factors significantly

improves prediction accuracy

relationship
hyperplane of r
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Mecan Rank Mcan Hits@N (%)

Model Raw  Filter N=10 =5 N=3 =1

Raw Filter | Raw Filter | Raw Filter | Raw  Filter
TransE 305 304 || 506 523 373 399 | 273 303 | 114 13.5
TransH 168 168 || 73.8 76.3 | 575 622  43.1 490 | 187 23.7
TransR 195 194 || 75,5 787 | 563 619 416 480 | 180 22.7
TransD 295 294 || 506 522 | 37.3 400 | 275 305 | 114 13.8
DKRL(CBOW)+TransE | 5,579 5,577 5.5 6.7 3.4 3.9 2.3 2.3 0.9 1.1
TransCony 36 35 (| 835 869  63.0 688 465 53.0 | 200 248

Evaluation results of link prediction on Facebook dataset.



Experimental Results

» Link prediction

* Using conversational factors significantly
improves prediction accuracy

» TransConv outperforms other models, particularly for

sparse relationships where there are fewer
examples

relationship
hyperplane of r

>

Mecan Rank Mcan Hits@N (%)

Model Raw  Filter N=10 =5 N=3 =1

Raw Filter | Raw Filter | Raw Filter | Raw  Filter
TransE 305 304 || 506 523 373 399 | 273 303 | 114 13.5
TransH 168 168 || 73.8 76.3 | 575 622  43.1 490 | 187 23.7
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TransCony 36 35 (| 835 869  63.0 688 465 53.0 | 200 248

Evaluation results of link prediction on Facebook dataset.
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Deep learning methods can be helpful to model more complex patterns in relational and dynamic graphs
But heterogeneous, dependent structure makes it difficult to identify a NN structure/method that works well

Current approaches: padding, random walk sequences, randomization, aggregation over repeated local structure

Even though graphs are often very large, the connectivity structure can be very sparse, which limits effective sample size
Current approaches: data augmentation, smoothing over neighborhoods, repeated random walks

Multiple competing views of data: static/temporal, local/global, community/neighbors
Current approaches: tied parameters, joint learning, model ensembles



Deep learning methods can be helpful to model more complex patterns in relational and dynamic graphs
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Even though graphs are often very large, the connectivity structure can be very sparse, which limits effective sample size
Current approaches: data augmentation, smoothing over neighborhoods, repeated random walks

Both positive and negative examples need to use graph structure effectively

Multiple competing views of data: static/temporal, local/global, community/neighbors
Current approaches: tied parameters, joint learning, model ensembles

Using inductive bias in latent space/model structure is helpful
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