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How to exploit network dependencies to improve 
predictions about user attributes?
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Gender?
Married?
Politics?
Religion?

Data network
G = (V,E)

V := users

E := friendships



F
N
D
!C

F
N
D
!C

F
Y
D
!C

M
Y
D
C

M
Y
C
C

F
N
C
!C

M
N
C
C

F
Y
D
C

Attributed network
G = (V,E)

V := users

E := friendships



F
N
D
!C

F
N
D
!C

F
Y
D
!C

M
Y
D
C

M
Y
C
C

F
N
C
!C

M
N
C
C

F
Y
D
C

< X, Yi = 1 >

< X, Yj = 0 >

G = (V,E)

V := users

E := friendships



For prediction: estimate joint distribution of class labels (Y) over network 
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any model to predict class 
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Probabilistic modeling: Learn set of models templates and use 
joint inference to combine together to make predictions

Local conditional

Decision tree:

Naive Bayes:

P (Yi|Ni) /
Y

vj2Ni

P (Yj |Yi)P (Yi)

Logistic regression:
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Neural network (e.g., LSTM):



Yi Yj

Yi X i
1

Yi X i
2

Yi X i
3

Model template

Probabilistic modeling: Learn set of models templates and use 
joint inference to combine together to make predictions



Yi Yj

Yi X i
1

Yi X i
2

Yi X i
3

+

Model template Data network

Probabilistic modeling: Learn set of models templates and use 
joint inference to combine together to make predictions

Model is produced by “rolling out” templates over  
relational structure in data network



Probabilistic modeling: Learn set of models templates and use 
joint inference to combine together to make predictions
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Model graph

Probabilistic modeling: Learn set of models templates and use 
joint inference to combine together to make predictions
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Probabilistic modeling: Learn set of models templates and use 
joint inference to combine together to make predictions

Data graph
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Learn joint model via optimization, tying parameters across templates

P (yG|xG) =
1
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Probabilistic modeling: Learn set of models templates and use 
joint inference to combine together to make predictions
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Learn joint model via optimization, tying parameters across templates

P (yG|xG) =
1
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�T (xC ,yC ; �T )

Probabilistic modeling: Learn set of models templates and use 
joint inference to combine together to make predictions

Note: this implicitly conditions on

graph structure G



Partially labeled network (G )

How do we estimate over a partially labeled graph?
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Partially labeled network (G )

How do we estimate over a partially labeled graph?

Approach 1:  
ignore unlabeled network during learning   

Approach 2: semi-supervised,  
use unlabeled only as features of labeled



Make predictions using collective inference

Small world graph 
Labeled nodes: 30% 
Autocorrelation: 0.5



Make predictions using collective inference

Small world graph 
Labeled nodes: 30% 
Autocorrelation: 0.5

Inference method:  
any approximate inference 
e.g., Gibbs sampling, loopy 
BP, variational inference  
 

Note: observed labels seed 
inference process



Make predictions using collective inference

Small world graph 
Labeled nodes: 30% 
Autocorrelation: 0.5

Inference method:  
any approximate inference 
e.g., Gibbs sampling, loopy 
BP, variational inference  
 

Note: observed labels seed 
inference process



Can neural networks improve semi-supervised collective inference?



Semi-supervised relational deep learning
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• To learn with partially labeled network, use semi-supervised collective classification

• Use relational EM for estimation over full network

• Recall that joint relational model = set of local conditional models + joint inference
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Semi-supervised relational deep learning

• To learn with partially labeled network, use semi-supervised collective classification

• Use relational EM for estimation over full network

• Recall that joint relational model = set of local conditional models + joint inference

• Previous conditionals: decision trees, regression models, naive Bayes, etc. 
 

• Can neural networks be used to learn better local conditional?  
Need a permutation-invariant vector representation for heterogeneous graphs

• Represent set of neighbors as a sequence, in random order

• To deal with heterogenous inputs (i.e., varying number of  
neighbors), use a recurrent neural network (e.g., LSTM)
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Network instance in partially labeled graph
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Deep collective inference (DCI) (Moore & N AAAI’17)

xd = [< fb,yb >, < fe,ye >, < fi,yi >, < ff,yf >, < fa,ya >, < fd,yd > ] 
    = [xd , xd , xd , xd , xd , xd  ]
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Deep collective inference (DCI) (Moore & N AAAI’17)

• For node     , and current iteration     , the input is node features concatenated with previous prediction                        and neighbor 
features concatenated with predictions/labels  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Deep collective inference (DCI) (Moore & N AAAI’17)

• For node     , and current iteration     , the input is node features concatenated with previous prediction                        and neighbor 
features concatenated with predictions/labels  
 
 
 
 
 
 
 
 
 
 

• Learn LSTM conditional with relational EM. Key design choices: 

• Initialize label predictions with non-collective relational model 

• Randomize neighbor order on every iteration 

• Correct for imbalanced classes, either by balancing the objective function or by balancing the data with augmentation
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Patents (17/83)

DCI

RNCC

PLEM
PLEM+

Evaluation shows that neural network (DCI) can produce better 
conditionals, if objective is designed carefully

Amazon DVD (50/50)

Lower BAE  
is better

PLEM
PLEM+

DCI

LR
LP

RNCC
LR+



Predicting subgraphs in evolving heterogeneous graphs
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• Task: Predict topology and/or label evolution of subgraphs

• E.g., from observed subgraphs in Gt=2017 to Gt=2018,  
predict their evolution in Gt=2019 

• Challenges: How to incorporate subgraph dependencies in a 
tractable way? How to represent data such that it is invariant to 
graph isomorphisms? 

• Naive approach: adapt existing graph prediction methods 
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Predicting subgraph evolution over time

• Task: Predict topology and/or label evolution of subgraphs

• E.g., from observed subgraphs in Gt=2017 to Gt=2018,  
predict their evolution in Gt=2019 

• Challenges: How to incorporate subgraph dependencies in a 
tractable way? How to represent data such that it is invariant to 
graph isomorphisms? 

• Naive approach: adapt existing graph prediction methods 

• Use link prediction methods to independently predict 
multiple links (doesn’t learn jointly)

• Use graph classification methods for subgraph prediction 
(doesn’t consider context around subgraph)

AAAI Graph

AlexEmbed Bob

AAAI Graph

Alex

G in 2017 G in 2018

G in 2019

NIPS MCMC

CarlieSample Dave

NIPS MCMC

Carlie

G in 2018

? ??
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• Learn subgraph embedding for joint edge-node-attribute 
predictions

• Examples drawn from larger connected subgraphs
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• SPNN is a 3-layer gated neural network 

• The pattern layer is a set of neurons, each neuron 
corresponds to one subgraph pattern  

• Sparse structure generated from the training data in a pre-
processing step (i.e., only existing patterns are included) 

• Each input feature is only connected to their corresponding 
neuron according to graph topology
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• SPNN is a 3-layer gated neural network 

• The pattern layer is a set of neurons, each neuron 
corresponds to one subgraph pattern  

• Sparse structure generated from the training data in a pre-
processing step (i.e., only existing patterns are included) 

• Each input feature is only connected to their corresponding 
neuron according to graph topology
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Experimental Results

• Subgraph prediction

• Datasets.  
DBLP: scientific papers in four related 
areas with 14k papers, 14k authors, 8k 
topics, and 20 venues  
Friendster: 14 millions users with 
hometown, college, interests, and 75 
million messages between users 

• Results.  
Improved subgraph prediction accuracy 
in tasks: (a) Topology Evolution, (b) 
Activity Level Prediction, (c) Group 
dissolution
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Figure 2: ROC curves (True Pos ⇥ False Pos): DBLP and Friendster tasks.
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Figure 3: Learning curves (AUC⇥Training Size) w/shaded 95% confidence intervals.
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Figure 4: (DBLP task) Pattern layer F⇤
1 , . . . , F⇤

8 , representing all connected subgraphs of P(4)
(conn) that appear in the training data. Bars show

the difference between learned weights of Class 1 (whether both dashed links appear at time t + 1) and Class 2 (everything else) for pattern
F⇤
j . Pattern F⇤

4 , when the author has published in a topic related to the venue, strongly predicts the appearance of both links. Pattern F⇤
2 ,

when a co-author has published at the venue and topic of interest but not the author, strongly predicts the absence of the joint links.

Independently Trained (Single Link Predictions) Jointly Trained Multi-Link Task
EdgeInfo PCRW PC N2V Rescal HolE EdgeInfo PCRW PC N2V Rescal HolE Patchy GraphNN SPNN

DBLP 0.811
±0.012

0.786
±0.007

0.783
±0.012

0.567
±0.008

0.611
±0.025

0.681
±0.024

0.830
±0.007

0.782
±0.007

0.788
±0.014

0.582
±0.007

0.611
±0.025

0.690
±0.024

0.627
±0.003

0.571
±0.021

0.846
±0.011

Friendster
(Activity)

0.530
±0.088

0.516
±0.007

0.509
±0.006

0.512
±0.011

0.521
±0.031

0.513
±0.006

0.502
±0.007

0.516
±0.012

0.515
±0.012

0.524
±0.018

0.502
±0.012

0.506
±0.013

0.519
±0.010

0.521
±0.023

0.690
±0.008

Friendster
(Structure)

0.568
±0.011

0.501
±0.002

0.501
±0.002

0.501
±0.003

0.558
±0.009

0.501
±0.002

0.501
±0.004

0.502
±0.002

0.552
±0.019

0.540
±0.017

0.521
±0.017

0.530
± 0.021

0.547
± 0.025

0.523
±0.019

0.607
±0.017

Table 1: Max Area Under Curve (AUC) scores of SPNN against baselines.

b) Friendster Activity task predicts the increase in activity
in weighted 4-node subgraphs: whether the total number
of messages sent between four users, which are connected
in the current time interval (G2), increases in the next time
interval (G3). This is a binary classification task. The class
set Y3

1 contains all subgraphs in the training data where

the total number of messages between nodes increases be-
tween consecutive snapshots. The class set Y3

2 contains all
other possible subgraphs that appear in the training data.
Our method generates 1230 features with 30 neurons in
the pattern layer.

c) Friendster Structure task predicts the evolution of 4-
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Figure 3: Learning curves (AUC⇥Training Size) w/shaded 95% confidence intervals.
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Figure 4: (DBLP task) Pattern layer F⇤
1 , . . . , F⇤

8 , representing all connected subgraphs of P(4)
(conn) that appear in the training data. Bars show

the difference between learned weights of Class 1 (whether both dashed links appear at time t + 1) and Class 2 (everything else) for pattern
F⇤
j . Pattern F⇤

4 , when the author has published in a topic related to the venue, strongly predicts the appearance of both links. Pattern F⇤
2 ,

when a co-author has published at the venue and topic of interest but not the author, strongly predicts the absence of the joint links.

Independently Trained (Single Link Predictions) Jointly Trained Multi-Link Task
EdgeInfo PCRW PC N2V Rescal HolE EdgeInfo PCRW PC N2V Rescal HolE Patchy GraphNN SPNN

DBLP 0.811
±0.012

0.786
±0.007

0.783
±0.012

0.567
±0.008

0.611
±0.025

0.681
±0.024

0.830
±0.007

0.782
±0.007

0.788
±0.014

0.582
±0.007

0.611
±0.025

0.690
±0.024

0.627
±0.003

0.571
±0.021

0.846
±0.011

Friendster
(Activity)

0.530
±0.088

0.516
±0.007

0.509
±0.006

0.512
±0.011

0.521
±0.031

0.513
±0.006

0.502
±0.007

0.516
±0.012

0.515
±0.012

0.524
±0.018

0.502
±0.012

0.506
±0.013

0.519
±0.010

0.521
±0.023

0.690
±0.008

Friendster
(Structure)

0.568
±0.011

0.501
±0.002

0.501
±0.002

0.501
±0.003

0.558
±0.009

0.501
±0.002

0.501
±0.004

0.502
±0.002

0.552
±0.019

0.540
±0.017

0.521
±0.017

0.530
± 0.021

0.547
± 0.025

0.523
±0.019

0.607
±0.017

Table 1: Max Area Under Curve (AUC) scores of SPNN against baselines.

b) Friendster Activity task predicts the increase in activity
in weighted 4-node subgraphs: whether the total number
of messages sent between four users, which are connected
in the current time interval (G2), increases in the next time
interval (G3). This is a binary classification task. The class
set Y3

1 contains all subgraphs in the training data where

the total number of messages between nodes increases be-
tween consecutive snapshots. The class set Y3

2 contains all
other possible subgraphs that appear in the training data.
Our method generates 1230 features with 30 neurons in
the pattern layer.

c) Friendster Structure task predicts the evolution of 4-
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Figure 2: ROC curves (True Pos ⇥ False Pos): DBLP and Friendster tasks.
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Figure 3: Learning curves (AUC⇥Training Size) w/shaded 95% confidence intervals.
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Figure 4: (DBLP task) Pattern layer weight difference between Class 1 (whether both dashed links appear at time t + 1) and Class 2
(everything else) for pattern F⇤

j . Pattern F⇤
4 , when the author has published in a topic related to the venue, strongly predicts the appearance

of both links. Pattern F⇤
2 , when a co-author has published at the venue and topic of interest but not the author, strongly predicts the absence

of the joint links.

Independently Trained (Single Link Predictions) Jointly Trained Multi-Link Task
EdgeInfo PCRW PC N2V Rescal HolE EdgeInfo PCRW PC N2V Rescal HolE Patchy GraphNN SPNN

DBLP 0.811
±0.012

0.786
±0.007

0.783
±0.012

0.567
±0.008

0.611
±0.025

0.681
±0.024

0.830
±0.007

0.782
±0.007

0.788
±0.014

0.582
±0.007

0.611
±0.025

0.690
±0.024

0.627
±0.003

0.571
±0.021

0.846
±0.011

Friendster
(Activity)

0.530
±0.088

0.516
±0.007

0.509
±0.006

0.512
±0.011

0.521
±0.031

0.513
±0.006

0.502
±0.007

0.516
±0.012

0.515
±0.012

0.524
±0.018

0.502
±0.012

0.506
±0.013

0.519
±0.010

0.521
±0.023

0.690
±0.008

Friendster
(Structure)

0.568
±0.011

0.501
±0.002

0.501
±0.002

0.501
±0.003

0.558
±0.009

0.501
±0.002

0.501
±0.004

0.502
±0.002

0.552
±0.019

0.540
±0.017

0.521
±0.017

0.530
± 0.021

0.547
± 0.025

0.523
±0.019

0.607
±0.017

Table 1: Max Area Under Curve (AUC) scores of SPNN against baselines.

will not send any messages in the next time stamp (i.e., be
disconnected in G3).

To learn a predictive model of subgraph evolution, we di-
vide the data into three temporal graphs G1, G2, G3. The
training set T 3

1 comprises 3-node or 4-node subgraphs from
G1 with class labels y determined from G2, and the test set
T 3

2 comprises subgraphs from G2 with class labels from G3.

Since DBLP is a dynamic network with timestamps, we con-
struct G1 from the data in 2003–2004, G2 from 2005–2006,
and G3 from 2007–2008. For Friendster, we construct G1

from data in Jan 2007–April 2007. G2 from May 2007–Aug
2007, and G3 from Sep 2007–Dec 2007. We selected year
2007 because it is the most active time period for Friendster.

ROC
curve



Experimental Results

• Subgraph prediction

• Datasets.  
DBLP: scientific papers in four related 
areas with 14k papers, 14k authors, 8k 
topics, and 20 venues  
Friendster: 14 millions users with 
hometown, college, interests, and 75 
million messages between users 

• Results.  
Improved subgraph prediction accuracy 
in tasks: (a) Topology Evolution, (b) 
Activity Level Prediction, (c) Group 
dissolution
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Figure 2: ROC curves (True Pos ⇥ False Pos): DBLP and Friendster tasks.
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Figure 3: Learning curves (AUC⇥Training Size) w/shaded 95% confidence intervals.
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Figure 4: (DBLP task) Pattern layer F⇤
1 , . . . , F⇤

8 , representing all connected subgraphs of P(4)
(conn) that appear in the training data. Bars show

the difference between learned weights of Class 1 (whether both dashed links appear at time t + 1) and Class 2 (everything else) for pattern
F⇤
j . Pattern F⇤

4 , when the author has published in a topic related to the venue, strongly predicts the appearance of both links. Pattern F⇤
2 ,

when a co-author has published at the venue and topic of interest but not the author, strongly predicts the absence of the joint links.

Independently Trained (Single Link Predictions) Jointly Trained Multi-Link Task
EdgeInfo PCRW PC N2V Rescal HolE EdgeInfo PCRW PC N2V Rescal HolE Patchy GraphNN SPNN

DBLP 0.811
±0.012

0.786
±0.007

0.783
±0.012

0.567
±0.008

0.611
±0.025

0.681
±0.024

0.830
±0.007

0.782
±0.007

0.788
±0.014

0.582
±0.007

0.611
±0.025

0.690
±0.024

0.627
±0.003

0.571
±0.021

0.846
±0.011

Friendster
(Activity)

0.530
±0.088

0.516
±0.007

0.509
±0.006

0.512
±0.011

0.521
±0.031

0.513
±0.006

0.502
±0.007

0.516
±0.012

0.515
±0.012

0.524
±0.018

0.502
±0.012

0.506
±0.013

0.519
±0.010

0.521
±0.023

0.690
±0.008

Friendster
(Structure)

0.568
±0.011

0.501
±0.002

0.501
±0.002

0.501
±0.003

0.558
±0.009

0.501
±0.002

0.501
±0.004

0.502
±0.002

0.552
±0.019

0.540
±0.017

0.521
±0.017

0.530
± 0.021

0.547
± 0.025

0.523
±0.019

0.607
±0.017

Table 1: Max Area Under Curve (AUC) scores of SPNN against baselines.

b) Friendster Activity task predicts the increase in activity
in weighted 4-node subgraphs: whether the total number
of messages sent between four users, which are connected
in the current time interval (G2), increases in the next time
interval (G3). This is a binary classification task. The class
set Y3

1 contains all subgraphs in the training data where

the total number of messages between nodes increases be-
tween consecutive snapshots. The class set Y3

2 contains all
other possible subgraphs that appear in the training data.
Our method generates 1230 features with 30 neurons in
the pattern layer.

c) Friendster Structure task predicts the evolution of 4-
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Figure 2: ROC curves (True Pos ⇥ False Pos): DBLP and Friendster tasks.
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Figure 3: Learning curves (AUC⇥Training Size) w/shaded 95% confidence intervals.
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Figure 4: (DBLP task) Pattern layer F⇤
1 , . . . , F⇤

8 , representing all connected subgraphs of P(4)
(conn) that appear in the training data. Bars show

the difference between learned weights of Class 1 (whether both dashed links appear at time t + 1) and Class 2 (everything else) for pattern
F⇤
j . Pattern F⇤

4 , when the author has published in a topic related to the venue, strongly predicts the appearance of both links. Pattern F⇤
2 ,

when a co-author has published at the venue and topic of interest but not the author, strongly predicts the absence of the joint links.

Independently Trained (Single Link Predictions) Jointly Trained Multi-Link Task
EdgeInfo PCRW PC N2V Rescal HolE EdgeInfo PCRW PC N2V Rescal HolE Patchy GraphNN SPNN

DBLP 0.811
±0.012

0.786
±0.007

0.783
±0.012

0.567
±0.008

0.611
±0.025

0.681
±0.024

0.830
±0.007

0.782
±0.007

0.788
±0.014

0.582
±0.007

0.611
±0.025

0.690
±0.024

0.627
±0.003

0.571
±0.021

0.846
±0.011

Friendster
(Activity)

0.530
±0.088

0.516
±0.007

0.509
±0.006

0.512
±0.011

0.521
±0.031

0.513
±0.006

0.502
±0.007

0.516
±0.012

0.515
±0.012

0.524
±0.018

0.502
±0.012

0.506
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0.519
±0.010

0.521
±0.023

0.690
±0.008

Friendster
(Structure)

0.568
±0.011

0.501
±0.002

0.501
±0.002

0.501
±0.003

0.558
±0.009

0.501
±0.002

0.501
±0.004

0.502
±0.002

0.552
±0.019

0.540
±0.017

0.521
±0.017

0.530
± 0.021

0.547
± 0.025

0.523
±0.019

0.607
±0.017

Table 1: Max Area Under Curve (AUC) scores of SPNN against baselines.

b) Friendster Activity task predicts the increase in activity
in weighted 4-node subgraphs: whether the total number
of messages sent between four users, which are connected
in the current time interval (G2), increases in the next time
interval (G3). This is a binary classification task. The class
set Y3

1 contains all subgraphs in the training data where

the total number of messages between nodes increases be-
tween consecutive snapshots. The class set Y3

2 contains all
other possible subgraphs that appear in the training data.
Our method generates 1230 features with 30 neurons in
the pattern layer.

c) Friendster Structure task predicts the evolution of 4-
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Figure 2: ROC curves (True Pos ⇥ False Pos): DBLP and Friendster tasks.
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Figure 3: Learning curves (AUC⇥Training Size) w/shaded 95% confidence intervals.
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Figure 4: (DBLP task) Pattern layer weight difference between Class 1 (whether both dashed links appear at time t + 1) and Class 2
(everything else) for pattern F⇤

j . Pattern F⇤
4 , when the author has published in a topic related to the venue, strongly predicts the appearance

of both links. Pattern F⇤
2 , when a co-author has published at the venue and topic of interest but not the author, strongly predicts the absence

of the joint links.

Independently Trained (Single Link Predictions) Jointly Trained Multi-Link Task
EdgeInfo PCRW PC N2V Rescal HolE EdgeInfo PCRW PC N2V Rescal HolE Patchy GraphNN SPNN

DBLP 0.811
±0.012

0.786
±0.007

0.783
±0.012

0.567
±0.008

0.611
±0.025

0.681
±0.024

0.830
±0.007

0.782
±0.007

0.788
±0.014

0.582
±0.007

0.611
±0.025

0.690
±0.024

0.627
±0.003

0.571
±0.021

0.846
±0.011

Friendster
(Activity)

0.530
±0.088

0.516
±0.007

0.509
±0.006

0.512
±0.011

0.521
±0.031

0.513
±0.006

0.502
±0.007

0.516
±0.012

0.515
±0.012

0.524
±0.018

0.502
±0.012

0.506
±0.013

0.519
±0.010

0.521
±0.023

0.690
±0.008

Friendster
(Structure)

0.568
±0.011

0.501
±0.002

0.501
±0.002

0.501
±0.003

0.558
±0.009
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±0.002
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±0.004

0.502
±0.002

0.552
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±0.017
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± 0.025

0.523
±0.019

0.607
±0.017

Table 1: Max Area Under Curve (AUC) scores of SPNN against baselines.

will not send any messages in the next time stamp (i.e., be
disconnected in G3).

To learn a predictive model of subgraph evolution, we di-
vide the data into three temporal graphs G1, G2, G3. The
training set T 3

1 comprises 3-node or 4-node subgraphs from
G1 with class labels y determined from G2, and the test set
T 3

2 comprises subgraphs from G2 with class labels from G3.

Since DBLP is a dynamic network with timestamps, we con-
struct G1 from the data in 2003–2004, G2 from 2005–2006,
and G3 from 2007–2008. For Friendster, we construct G1

from data in Jan 2007–April 2007. G2 from May 2007–Aug
2007, and G3 from Sep 2007–Dec 2007. We selected year
2007 because it is the most active time period for Friendster.
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Translational embeddings using message content



Learning translational social relation embeddings



Learning translational social relation embeddings

• Task: Learn explicit relationship representation between users in social networks

• Perform link prediction through vector composition

• Recommend friends directly via relationship types 

senior_to

vi

vj

vk

religion_christian



Learning translational social relation embeddings

• Task: Learn explicit relationship representation between users in social networks

• Perform link prediction through vector composition
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• Motivation:
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Learning translational social relation embeddings

• Task: Learn explicit relationship representation between users in social networks

• Perform link prediction through vector composition

• Recommend friends directly via relationship types 

• Motivation:

• Word2Vec (Mikolov et al ’13) uses vector arithmetic to encode word analogies

• E.g. King - Man + Woman = Queen 

• Goal:

• Learn edge representation explicitly 

• Consider multiple relationships between pair of users 

• Consider textual interactions between pair of users

senior_to
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vj

vk

religion_christian

texts from 

vi to vj

texts from vi to vk
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Conversation-based factors

• Textual communication reflects the degree of affinity and intensity 
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Conversation-based factors

• Textual communication reflects the degree of affinity and intensity 
of interaction between ui and uj

ujui

• Conversation Similarity Factor ( µrij ) 
• Capture textual similarity of interaction 
• Identify most representative set of words as dictionary Wr for each  

relation r ∈ R 
• Based on Wr, transform conversations ui -> uj  and uj -> ui to relevant word vectors and then compute the 

similarity

Signal of pair’s 
relationship

• Conversation Frequency Factor ( Фrij ) 
• Represent the strength of interaction

• Based on Wr, see if ui communicates more with uj, on topics relevant to relation r

Higher µrij means pair’s 
discussion is more relevant to r  

Higher Фrij indicates pair have 
stronger interaction wrt r
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indicate which relation is stronger



Trans-Conv Relational Embeddings (Lai, N, and Goldwasser AAAI’19)

• Learn embeddings jointly with relation-
specific hyperplanes


• Score function fr  measures the plausibility 
that the triplet (ui , r , uj ) is incorrect

conversational factors

{

Example: 

• u1 and u2 have two relationships in data: 
( u1 , rsenior_to , u2 ), ( u1 , rchristian , u2 ). 


• But u1 and u2 discussion focuses more 
on christian topics than senior_to topics


• Conversational factors capture this to 
indicate which relation is stronger
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Experimental Results

• Link prediction
ui 

ui⊥ 
r

?

relationship 
hyperplane of r

• Using conversational factors significantly 
improves prediction accuracy

• TransConv outperforms other models, particularly for 
sparse relationships where there are fewer 
examples





Deep learning methods can be helpful to model more complex patterns in relational and dynamic graphs 



Deep learning methods can be helpful to model more complex patterns in relational and dynamic graphs 

But heterogeneous, dependent structure makes it difficult to identify a NN structure/method that works well 
 Current approaches: padding, random walk sequences, randomization, aggregation over repeated local structure  
 

Even though graphs are often very large, the connectivity structure can be very sparse, which limits effective sample size 
Current approaches: data augmentation, smoothing over neighborhoods, repeated random walks  
 

Multiple competing views of data: static/temporal, local/global, community/neighbors 
Current approaches: tied parameters, joint learning, model ensembles



Deep learning methods can be helpful to model more complex patterns in relational and dynamic graphs 

But heterogeneous, dependent structure makes it difficult to identify a NN structure/method that works well 
 Current approaches: padding, random walk sequences, randomization, aggregation over repeated local structure  
 

Even though graphs are often very large, the connectivity structure can be very sparse, which limits effective sample size 
Current approaches: data augmentation, smoothing over neighborhoods, repeated random walks  
 

Multiple competing views of data: static/temporal, local/global, community/neighbors 
Current approaches: tied parameters, joint learning, model ensembles

See Janossy Pooling (Murphy et al. arxiv’18)



Deep learning methods can be helpful to model more complex patterns in relational and dynamic graphs 

But heterogeneous, dependent structure makes it difficult to identify a NN structure/method that works well 
 Current approaches: padding, random walk sequences, randomization, aggregation over repeated local structure  
 

Even though graphs are often very large, the connectivity structure can be very sparse, which limits effective sample size 
Current approaches: data augmentation, smoothing over neighborhoods, repeated random walks  
 

Multiple competing views of data: static/temporal, local/global, community/neighbors 
Current approaches: tied parameters, joint learning, model ensembles

See Janossy Pooling (Murphy et al. arxiv’18)

Both positive and negative examples need to use graph structure effectively 



Deep learning methods can be helpful to model more complex patterns in relational and dynamic graphs 

But heterogeneous, dependent structure makes it difficult to identify a NN structure/method that works well 
 Current approaches: padding, random walk sequences, randomization, aggregation over repeated local structure  
 

Even though graphs are often very large, the connectivity structure can be very sparse, which limits effective sample size 
Current approaches: data augmentation, smoothing over neighborhoods, repeated random walks  
 

Multiple competing views of data: static/temporal, local/global, community/neighbors 
Current approaches: tied parameters, joint learning, model ensembles

See Janossy Pooling (Murphy et al. arxiv’18)

Both positive and negative examples need to use graph structure effectively 

Using inductive bias in latent space/model structure is helpful



Thanks 

neville@cs.purdue.edu 
www.cs.purdue.edu/~neville


