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Nanocomputers
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Raspberry Pi 2 Scaleway Server Kangaroo

$35 2.99 euro/month $99.99

4-core ARMv7 4-core ARMv7 4-core Intel Atom

1GB RAM 2GB RAM 2GB RAM

2TB HDD ($89.99) 50GB SSD 32GB SSD



Focus of Today’s Talk

We can use nanocomputers to compute PageRank and connected components 
reasonably quickly on graphs with a few billion edges.

What are the bottlenecks?
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Graph Processing

Algorithms: PageRank and Connected Components.

Maintain a piece of data for each node in a vector.
For each iteration,

For each edge,
Update each node’s entry in the vector 
by sending information along the edge.

Implementation: https://github.com/brainey421/badjgraph
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Datasets
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From the Laboratory for Web Algorithmics at the University of Milan.

Converted from the compressed WebGraph format into a binary adjacency list format.

Graph Nodes Edges Size

hollywood-2011 2,180,759 228,985,632 0.8612GB

uk-2005 39,459,925 936,364,282 3.635GB

twitter-2010 41,652,230 1,468,365,182 5.625GB

sk-2005 50,636,154 1,949,412,601 7.451GB

com-friendster 65,608,366 3,612,134,270 13.70GB



Streaming Graphs

Baseline measurement of performance.
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20 Iterations of PageRank
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What are the potential bottlenecks?

1. I/O Bandwidth: 23MBps (RPi), 110MBps (Scaleway), 150MBps (Kangaroo).
2. Memory Bandwidth*: 810MBps, 400MBps, 2100MBps.
3. Memory Latency: 250 ns, 130 ns, 150 ns.

*Cache line size: 32B, 32B, 64B. 
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Graph Size % Remote Accesses

hollywood-2011 0.8612GB 8.7%

uk-2005 3.635GB 3.7%

twitter-2010 5.625GB 35% and 34%

sk-2005 7.451GB 7.9%

com-friendster 13.70GB 85%



Performance Model

Running time per iteration = max {
(size of graph) / (I/O bandwidth),
(number of remote accesses) *  (cache line size) / (memory bandwidth),
(number of remote accesses) * (memory latency)

}

● Raspberry Pi is usually bottlenecked on I/O bandwidth.
● Scaleway and Kangaroo are usually bottlenecked on memory latency.
● The two web crawls are always bottlenecked on I/O bandwidth.
● Friendster is always bottlenecked on memory latency.
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Performance Model Evaluation

I/O bandwidth and memory latency generally predict PageRank’s running time on 
nanocomputers within a factor of 2.
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Graph Raspberry Pi
Predicted/Actual

Scaleway
Predicted/Actual

Kangaroo
Predicted/Actual

hollywood-2011 98% 57% 120%

uk-2005 97% 96% 99%

twitter-2010 91% and 94% 67% and 73% 110% and 120%

sk-2005 100% 97% 100%

com-friendster 110% 120% 230%



Final Thoughts

Nanocomputers sometimes fall short in scalability and flexibility.

BUT they could save money and energy (7.0 W Raspberry Pi, 9.3 W Kangaroo).

Thank You: David F. Gleich and the Network/Matrix Group at Purdue University.

Related Work:

Kyrola et al., “GraphChi: Large-scale graph computation on just a PC,” 2012.
McSherry et al., “Scalability! But at what COST?” 2015.
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System Comparisons for the Twitter Graph
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Parallelization

Split the graph file into blocks to divide among the threads.

      Deal with a potential race condition 
      while updating the vector.
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Memory Hierarchy
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Cache
Remembers the most recently 

updated vector entries.

RAM
Maintains a vector of data for 

the nodes.

Storage
Stores the graph.

I/O bandwidth?

Locality of reference?
Memory bandwidth?
Memory latency?



Connected Components
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Massive Graph Processing on Nanocomputers

Idea: Write custom implementations of iterative graph algorithms for tiny, cheap 
computers like the Raspberry Pi.

Main limitation: Tiny computers don’t have enough RAM to store large graphs, so we 
stream graphs from storage.

Brief result: The Kangaroo ($100, 4-core Intel Atom) can compute PageRank on the 
Twitter graph as quickly as some graph-processing systems running on 12-48 cores.

Bottlenecks? Depends on the machine and the size/structure of the graph. It’s a matter 
of moving data around.
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