
Massive Graph Processing
on Nanocomputers
Bryan Rainey and David F. Gleich
Department of Computer Science, Purdue University

1

Nanocomputers

2

Raspberry Pi 2 Scaleway Server Kangaroo

$35 2.99 euro/month $99.99

4-core ARMv7 4-core ARMv7 4-core Intel Atom

1GB RAM 2GB RAM 2GB RAM

2TB HDD ($89.99) 50GB SSD 32GB SSD

Focus of Today’s Talk

We can use nanocomputers to compute PageRank and connected components
reasonably quickly on graphs with a few billion edges.

What are the bottlenecks?

3

Graph Processing

Algorithms: PageRank and Connected Components.

Maintain a piece of data for each node in a vector.
For each iteration,

For each edge,
Update each node’s entry in the vector
by sending information along the edge.

Implementation: https://github.com/brainey421/badjgraph

4

Datasets

5

From the Laboratory for Web Algorithmics at the University of Milan.

Converted from the compressed WebGraph format into a binary adjacency list format.

Graph Nodes Edges Size

hollywood-2011 2,180,759 228,985,632 0.8612GB

uk-2005 39,459,925 936,364,282 3.635GB

twitter-2010 41,652,230 1,468,365,182 5.625GB

sk-2005 50,636,154 1,949,412,601 7.451GB

com-friendster 65,608,366 3,612,134,270 13.70GB

Streaming Graphs

Baseline measurement of performance.

6

20 Iterations of PageRank

7

What are the potential bottlenecks?

1. I/O Bandwidth: 23MBps (RPi), 110MBps (Scaleway), 150MBps (Kangaroo).
2. Memory Bandwidth*: 810MBps, 400MBps, 2100MBps.
3. Memory Latency: 250 ns, 130 ns, 150 ns.

*Cache line size: 32B, 32B, 64B.

8

Graph Size % Remote Accesses

hollywood-2011 0.8612GB 8.7%

uk-2005 3.635GB 3.7%

twitter-2010 5.625GB 35% and 34%

sk-2005 7.451GB 7.9%

com-friendster 13.70GB 85%

Performance Model

Running time per iteration = max {
(size of graph) / (I/O bandwidth),
(number of remote accesses) * (cache line size) / (memory bandwidth),
(number of remote accesses) * (memory latency)

}

● Raspberry Pi is usually bottlenecked on I/O bandwidth.
● Scaleway and Kangaroo are usually bottlenecked on memory latency.
● The two web crawls are always bottlenecked on I/O bandwidth.
● Friendster is always bottlenecked on memory latency.

9

Performance Model Evaluation

I/O bandwidth and memory latency generally predict PageRank’s running time on
nanocomputers within a factor of 2.

10

Graph Raspberry Pi
Predicted/Actual

Scaleway
Predicted/Actual

Kangaroo
Predicted/Actual

hollywood-2011 98% 57% 120%

uk-2005 97% 96% 99%

twitter-2010 91% and 94% 67% and 73% 110% and 120%

sk-2005 100% 97% 100%

com-friendster 110% 120% 230%

Final Thoughts

Nanocomputers sometimes fall short in scalability and flexibility.

BUT they could save money and energy (7.0 W Raspberry Pi, 9.3 W Kangaroo).

Thank You: David F. Gleich and the Network/Matrix Group at Purdue University.

Related Work:

Kyrola et al., “GraphChi: Large-scale graph computation on just a PC,” 2012.
McSherry et al., “Scalability! But at what COST?” 2015.

11

System Comparisons for the Twitter Graph

12

Parallelization

Split the graph file into blocks to divide among the threads.

 Deal with a potential race condition
 while updating the vector.

13

16MB 16MB 16MB 16MB ... 16MB

Node 1

Node 2

Node 3

Node 4

...

Node N

Memory Hierarchy

14

Cache
Remembers the most recently

updated vector entries.

RAM
Maintains a vector of data for

the nodes.

Storage
Stores the graph.

I/O bandwidth?

Locality of reference?
Memory bandwidth?
Memory latency?

Connected Components

15

Massive Graph Processing on Nanocomputers

Idea: Write custom implementations of iterative graph algorithms for tiny, cheap
computers like the Raspberry Pi.

Main limitation: Tiny computers don’t have enough RAM to store large graphs, so we
stream graphs from storage.

Brief result: The Kangaroo ($100, 4-core Intel Atom) can compute PageRank on the
Twitter graph as quickly as some graph-processing systems running on 12-48 cores.

Bottlenecks? Depends on the machine and the size/structure of the graph. It’s a matter
of moving data around.

16

