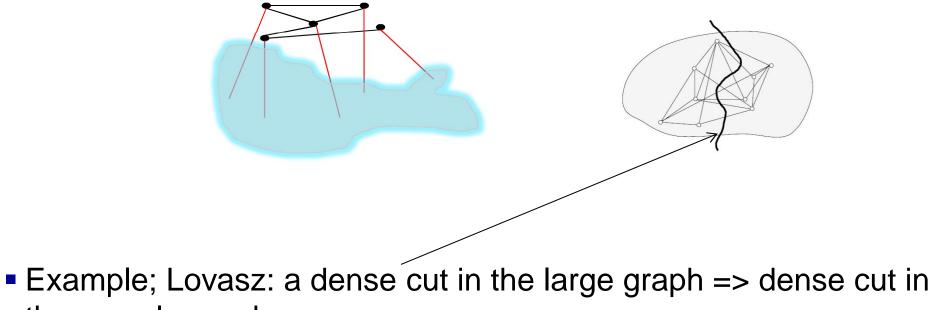


Regular decomposition of large graphs and other structures: scalability and robustness towards missing data

Hannu Reittu (VTT, Finland) Joint work with Ilkka Norros (VTT) and Fülöp Bazsó (Wigner Research Centre, Hungary)

Huge networks are everywhere!

- Infer properties from small samples of large graphs
 - Property testing (Goldreich et al (1998)- Alon (2009)...)
 - Graph parameter testing



the sample graph

Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira

2009:

SIAM J. Comput., 39(1), 143-167. (25 pages)

A Combinatorial Characterization of the Testable Graph Properties: It's All About Regularity

DEFINITION 2.5. (REGULAR-REDUCIBLE) A graph property \mathcal{P} is regular-reducible if for any $\delta > 0$ there exists an $r = r(\delta)$ such that for any n there is a family \mathcal{R} of at most r regularity-instances each of complexity at most r, such that the following holds for every n-vertex graph G:

- 1. If G satisfies \mathcal{P} then for some $R \in \mathcal{R}$, G is δ -close to satisfying R.
- 2. If G is ϵ -far from satisfying \mathcal{P} , then for any $R \in \mathcal{R}$, G is $(\epsilon \delta)$ -far from satisfying R.

THEOREM 2. (MAIN RESULT) A graph property is testable if and only if it is regular-reducible.

WikipediA

Szemerédi regularity lemma (SRL)

Definition 1. Let X, Y be disjoint subsets of V. The **density** of the pair (X, Y) is defined as:

$$d(X,Y):=rac{|E(X,Y)|}{|X||Y|}$$

where E(X, Y) denotes the set of edges having one end vertex in X and one in Y.

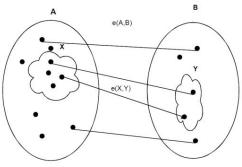
Definition 2. For $\varepsilon > 0$, a pair of vertex sets X and Y is called ε -regular, if for all subsets $A \subseteq X$, $B \subseteq Y$ satisfying $|A| \ge \varepsilon |X|$, $|B| \ge \varepsilon |Y|$, we have

$$|d(X,Y)-d(A,B)|\leq arepsilon.$$

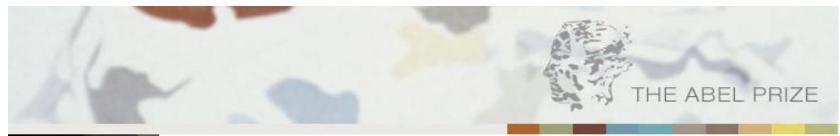
Definition 3. A partition of V into k sets: $V_1, ..., V_k$, is called an ε -regular partition, if:

- for all *i*, *j* we have: $||V_i| |V_j|| \le 1$;
- all except εk^2 of the pairs V_i , V_j , i < j, are ε -regular.

Regularity Lemma. For every $\varepsilon > 0$ and positive integer *m* there exists an integer *M* such that if *G* is a graph with at least *M* vertices, there exists an integer *k* in the range $m \le k \le M$ and an ε -regular partition of the vertex set of *G* into *k* sets whose sizes differ by at most 1.



A celebrated result:



Abel Prize Laureate 2012 Endre Szemerédi

Szemerédi`s Regularity lemma

A main ingredient in Szemerédis theorem about arithmetic progressions in sets of positive density is the Regularity lemma. Szemerédi used a weak form of this lemma, for bipartite graphs, to prove the theorem. Later he also proved a strong version, for more general graphs.

Szemerédi's Regularity Lemma and big data?

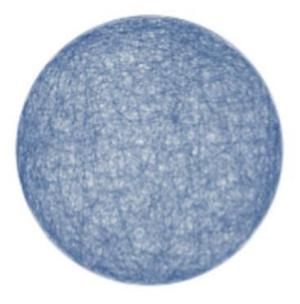
- About big graphs (testability, graph limits,...)
- Algorithmic versions: Regular structure can be found efficiently (deterministic: $O(n^2)$ time, randomized: O(n) time)
- Rigorous algorithms have huge constants like: $O(k^2 2^{2^{(k/\alpha\epsilon)}} n^2)$, where k, $1/\epsilon\alpha$ are bounded yet possibly very large numbers
- => impossible to use in practice
- Needs some approximating scheme to find regular structure

Mimic Regularity Lemma in 'practical' way:

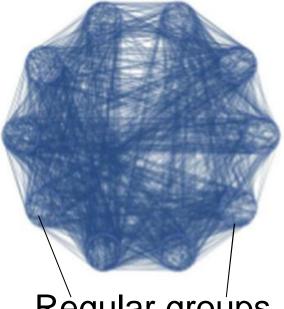
- VTT -> regular decomposition algorithm for 'Big Data' and machine learning
- See also:
- Marcello Pelillo, Ismail Elezi, Marco Fiorucci: Revealing Structure in Large Graphs: Szemerédi's Regularity Lemma and its Use in Pattern Recognition, Pattern Recog. Letters, 2017
- Hannu Reittu, Fülöp Bazsó, Ilkka Norros: Regular Decomposition: an information and graph theoretic approach to stochastic block models, ArXiv, 2017

Regular decomposition

A graph



Regular decomposition



Règular groups

Reduced graph

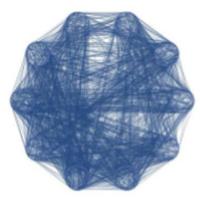


Link densities

Reduced graph

→ (P)_{*i*,*j*}, $k \times k$, symmetric, elements 0 ≤ $p_{i,j}$ ≤ 1, are link densities between – and inside regular groups

Regular decomposition



Partition ξ of nodes into k regular groups

Minimum description length principle (MDL) for finding regular decomposition:

- Coding length of a graph given a regular decomposition: (1) $L_k(G|P) \coloneqq -\log P(G|P) \equiv \sum_{1 \le i \le k} n_{i,i} h(p_{i,i})$
- h(p): = $-p \log p (1 p) \log(1 p), 0 \le p \le 1, n_{i,j}$ is # node pairs inside (i = j) and between ($i \ne j$) groups
- Coding length of a partition ξ

(2)
$$L_k(\xi = \{V_1, V_2, \dots, V_k\}) = -\sum_{1 \le i \le k} n_i \log r_i$$

• r_i is relative size of set V_i in the partition and $n_i = |V_i|$

(3) $L_k(P) = \sum_{1 \le i \le k} \log(e_{i,j}), e_{i,j}$, number of links between groups or inside groups.

• Regular decomposition (MDL) min((1)+(2)+(3)) (V_1, V_2, \dots, V_{k^*}) = argmin argmin ($L_k(G|P) + L_k(\xi) + L_k(P)$)

Greedy regular decomposition algorithm

- For a given k make a random k-partition ξ_0 ,
- Compute link densities and get link density matrix P_0
- Apply mapping $P_{i+1} = \Phi(P_i)$, $\mathbf{i} = \mathbf{0}, \mathbf{1}, \dots$, until fixed point $P_{i+1} = P_i = P^*$ is reached on corresponding partition ξ^*
- Find coding length of the graph corresponding to ξ^* , $L(\xi^*)$
- Repeat above procedure several times and find the partition that correspond to **min** $L(\xi^*)$ over all repetition
- Search above optimization in a range of k,
- Result an approximate MDL optimal regular decomposition

Other related works

Spectral approach to regular decomposition:

Bolla, M.: Spectral clustering and biclustering, Wiley, 2013

Stochastic block modeling and MDL, see e.g.

Peixoto, T.P.: Parsimonious Model Inference in Large Networks, Phys. Rev. Lett. 110, 2013

Algorithmic version of reg. lemma

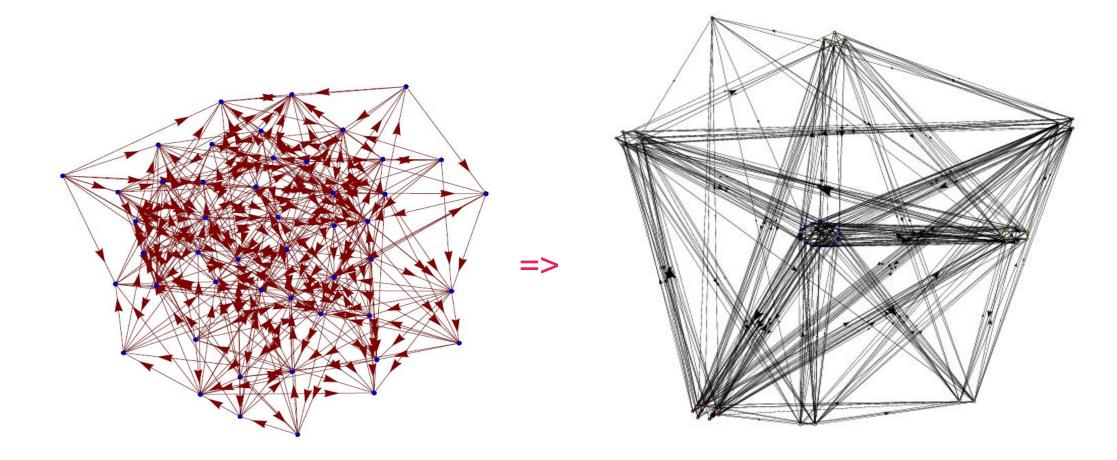
A Sperotto, M Pelillo: Szemerédi's regularity lemma and its applications to pairwise clustering and segmentation, in proc. Energy minimization methods in computer vision and pattern recognition, 13-27, 2007

Gábor N. Sárközy, Fei Song, Endre Szemerédi, Shubhendu Trivedi:

A Practical Regularity Partitioning Algorithm and its Applications in Clustering, Arxiv

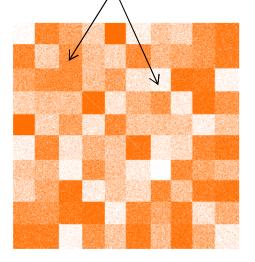
- Testability, graph limits, regularity, see e.g.
- L. Lovász and B. Szegedy: Szemerédi's Lemma for the analyst, J. Geom. and Func. Anal. 17 (2007), 252-270

A directed weighted graph:



In regular decomposition the mapping $\Phi(\cdot)$ involves matrix multiplication of adjacency matrix

- => Too heavy for very large graphs
- Claim: if a regular structure with moderate k exists for a graph, then small sample is sufficient to find regular decomposition
- => regular decomposition is computationally feasible for big graphs
- Needs only to estimate link densities in every block
- => scales and tolerates missing link data

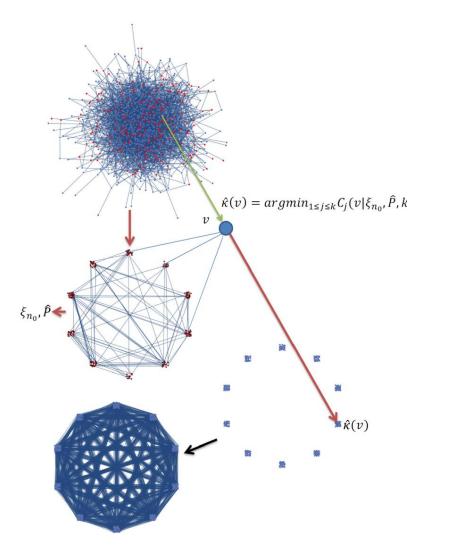


Sampling:

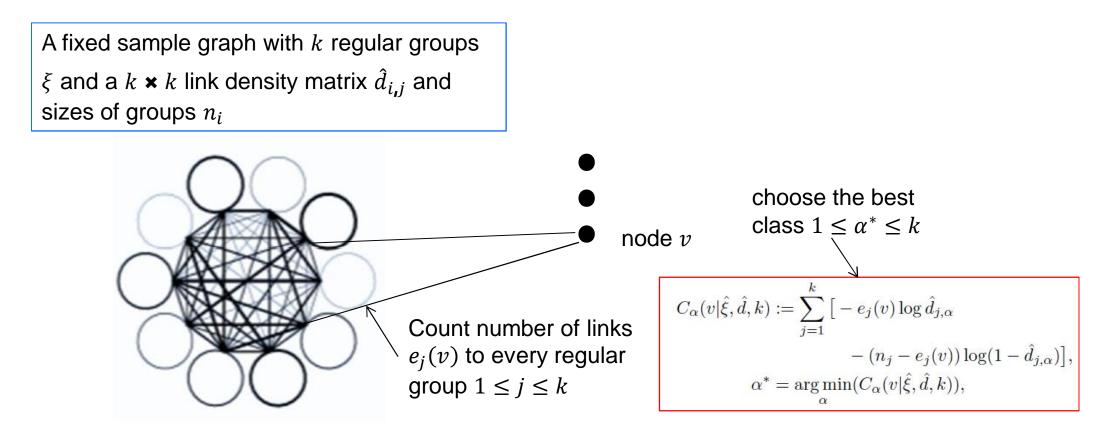
assume we have a large regular graph – k groups with regular link densities

- Make a small uniformly random sample of nodes
- Retrieve links of induced small graph
- Find regular structure of the small sample graph
- Define a classifier based on sample graph
- Classify all nodes of the large graph (in linear time)
- Sompact representation of a graph => use in further analysis

Graphically:



Classifier:



First experiments supporting conjectures of testability:

- 10 × 10 regular groups with uniformly random link densities
 U(0,1)
- **200** nodes is enough, **50** is too little; adjacency matrix

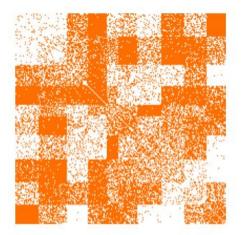


Fig. 6. 200 node sample, from the same model as above, that generates almost a perfect classifier - no errors detected in experiments.

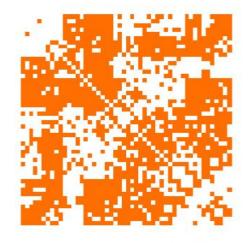


Fig. 5. A sample graph with 50 nodes that is insufficient to create a successful classifier - the result is similar to completely random classification.

Remarks:

- Error probability as a function of sample size?
 - 4 sources of classification errors (link densities, group sizes, misclassifications of sample, missing links)
 - Conjecture: exponentially small error probabilities
- Proof of existence (testability of graph sampling à la Lovasz)?
- Suggested sampling makes sense for <u>dense graphs</u>
 - How to extend to sparse case (different sampling style, sparse regularity...?)
- Similar approach should work also for real matrices, multi level graphs, tensors, hypergraphs (partly tested on data)

Thank You!

