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Huge networks are everywhere!

= Infer properties from small samples of large graphs
= Property testing (Goldreich et al (1998)- Alon (2009)...)
= Graph parameter testing

= Example; Lovasz: a dense cut in the large graph => dense cut in
the sample graph
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Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira
2009:

SIAM J. Comput., 39(1), 143—167. (25 pages)

A Combinatorial Characterization of
the Testable Graph Properties: It's All
About Regularity

DEFINITION 2.5. (REGULAR-REDUCIBLE) A graph prop-
erty P is regular-reducible if for any 6 > 0 there exists an
r = r(d) such that for any n there is a family R of at most r
reqularity-instances each of complexity at most r, such that
the following holds for every n-vertexr graph G':

1. If GG satisfies P then for some R € R, G is d-close Lo
satisfying R.

2. If G is e-far from satisfying P, then for any R € R, G
is (e — &)-far from satisfying R.

THEOREM 2. (MAIN RESULT) A graph property is testable
if and only if it is reqular-reducible.
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WIKIPEDIA
Szemerédi regularity lemma (SRL)

Definition 1. Let X, ¥ be disjoint subsets of V. The density of the pair (X, ¥) is defined as:

_|E(X,Y)]
Y= X

where E(X, Y) denotes the set of edges having one end vertex in X and one in Y.

Definition 2. For € > 0, a pair of vertex sets X and Y is called g-regular, if for all subsets 4 C X,
B C Ysatisfying |4| > €|X], | B| > €| Y], we have

e(A.B)

d(X,Y) — d(A, B)| <. e .
T

Definition 3. A partition of Vinto k sets: V7, ..., V, is called an g-regular partition, if:

v forall i, j we have: ||V — [V| < L;

v all except ek” of the pairs V;, VJ, i <J, are g-regular.

Regularity Lemma. For every € > 0 and positive integer m there exists an integer M such thatif G is a
graph with at least M vertices, there exists an integer k in the range m < k < M and an &-regular

partition of the vertex set of  into k sets whose sizes differ by at most 1.
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A celebrated result:

‘—"

S vy THE ABEL PRIZE

Abel Prize Laureate 2012
Endre Szemerédi

"/ Szemerédi's Regularity lemma

A main ingredient in Szemerédis theorem about arithmetic progressions in sets of posi-
tive density is the Regularity lemma. Szemerédi used a weak form of this lemma, for

bipartite graphs, to prove the theorem. Later he also proved a strong version, for more
general graphs.
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VIr
Szemereéedi’'s Regularity Lemma and big data?

= About big graphs (testability, graph limits,...)

= Algorithmic versions: Regular structure can be found efficiently
(deterministic: 0(n?) time, randomized: 0(n) time)

= Rigorous algorithms have huge constants like:

( 9 Ao (k/ae)0) 2) _
0O\k<2 n“J,where k,1/ea are bounded yet possibly very
large numbers

* => impossible to use in practice
* Needs some approximating scheme to find regular structure
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Mimic Regularity Lemma in ‘practical’ way:

= VTT -> regular decomposition algorithm for ‘Big Data’ and
machine learning

= See also:

= Marcello Pelillo, Ismail Elezi, Marco Fiorucci: Revealing Structure in Large Graphs:
Szemerédi's Regularity Lemma and its Use in Pattern Recognition, Pattern Recog.
Letters, 2017

= Hannu Reittu, Filop Bazso, llkka Norros: Regular Decomposition: an information and
graph theoretic approach to stochastic block models, ArXiv, 2017
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Yvar
Regular decomposition

Regular decomposition Reduced graph

Regular groups Link densities
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Reduced graph

- (P)ij, k> k,symmetric, elements
0 < p;; <1, are link densities between
— and inside regular groups

Partition ¢ of nodes into k regular
groups
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Minimum description length principle (MDL)
for finding regular decomposition:

* Coding length of a graph given a regular decomposition:

(1) L (GIP) = —1og P(GIP) = X1 <i<jsk i jh(pi ),

"h(p):=—plogp — (1 —p)log(1 —p),0<p <1, n;;is# node
pairs inside (i = j) and between (i + j) groups

* Coding length of a partition ¢

(2) L€ ={V1, Vo, . . Vic}) = = Dycice i lOQ T

= 1; IS relative size of set V; in the partition and n; = |V;]

(3) L (P) = Xq<i<k Iog(ei,j), € number of links between groups
or inside groups.
= Regular decomposition (MDL) min((1)+(2)+(3))

Vi, Voo Vi) = argmln argmin (L (G|P) + L (¢) + L, (P))

§={V1.V2...Vk)
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Greedy regular decomposition algorithm

* For a given k make a random k-partition &,

= Compute link densities and get link density matrix P,

= Apply mapping P;,; = ®(P;),i =0,1,..., until fixed point
P,., = P; = P* Is reached on corresponding partition &*

* Find coding length of the graph corresponding to &*, L(¢™)

» Repeat above procedure several times and find the partition that
correspond to min L(&*) over all repetition

= Search above optimization in a range of k,
» Result an approximate MDL optimal regular decomposition
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Other related works

= Spectral approach to regular decomposition:
Bolla, M.: Spectral clustering and biclustering, Wiley, 2013
= Stochastic block modeling and MDL, see e.qg.

Peixoto, T.P.: Parsimonious Model Inference in Large Networks, Phys. Rev. Lett. 110,
2013

= Algorithmic version of reg. lemma

A Sperotto, M Pelillo: Szemerédi’s regularity lemma and its applications to pairwise
clustering and segmentation, in proc. Energy minimization methods in computer vision and
pattern recognition, 13-27, 2007

Gabor N. Sarkézy, Fei Song, Endre Szemerédi, Shubhendu Trivedi:
A Practical Regularity Partitioning Algorithm and its Applications in Clustering, Arxiv

= Testability, graph limits, regularity, see e.qg.

" L. Lovasz and B. Szegedy: Szemeredi's Lemma for the analyst, J. Geom. and Func.
Anal. 17 (2007), 252-270

08/12/2017 IEEE BigGraphs 2017, Boston 11.12.2017 12



A directed weighted graph:

b ‘.;"-\-i )




In regular decomposition the mapping ®(-) involves matrix
multiplication of adjacency matrix

= => Too heavy for very large graphs

= Claim: if a regular structure with moderate k exists for a graph,
then small sample is sufficient to find regular decomposition

= => regular decomposition is computationally feasible for big
graphs

= Needs only to estimate link densities in every block

= => scales and tolerates missing link data /\
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VIr

Sampling:
assume we have alarge regular graph — k groups with regular link
densities

= Make a small uniformly random sample of nodes

= Retrieve links of induced small graph

* Find regular structure of the small sample graph

» Define a classifier based on sample graph

= Classify all nodes of the large graph (in linear time)

» => Compact representation of a graph => use in further analysis
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Graphically:
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Classifier:

A fixed sample graph with k regular groups

¢ and a k x k link density matrix d; ; and
sizes of groups n;

o choose the best
classl1<a*<k

® nodev \,

k
_ Ca(vl€,d,k) =) [—e;j(v)logd;a
Count number of links j=1

\__/ = ej(v) to every regular — (nj — e;(v)) log(1 — dj )],
groupl<j<k a* Zargflin(ﬁ-’a(-v\é-. d, k)).
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Ysar
First experiments supporting conjectures of
testability:

= 10 x 10 regular groups with uniformly random link densities
U(0,1)
= 200 nodes is enough, 50 is too little; adjacency matrix

Fig. 5. A sample graph with 50 nodes that is insufficient to

Fig. 6. 200 node sample, from the same model as above, create a successful classifier - the result is similar to completely
that generates almost a perfect classifier - no errors detected random classification.

in experiments.
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Remarks:

= Error probability as a function of sample size?

= 4 sources of classification errors (link densities, group sizes,
misclassifications of sample, missing links)

= Conjecture: exponentially small error probabilities
» Proof of existence (testability of graph sampling a la Lovasz)?

» Suggested sampling makes sense for dense graphs
= How to extend to sparse case (different sampling style, sparse
regularity...?)
= Similar approach should work also for real matrices, multi level
graphs, tensors, hypergraphs (partly tested on data)
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Thank You!




