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Huge networks are everywhere!

§ Infer properties from small samples of large graphs
§ Property testing (Goldreich et al (1998)- Alon (2009)…)
§ Graph parameter testing

§ Example; Lovasz: a dense cut in the large graph => dense cut in
the sample graph

IEEE BigGraphs 2017, Boston 11.12.2017
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2009:
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(SRL)
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A celebrated result:
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Szemerédi’s Regularity Lemma and big data?

§ About big graphs (testability, graph limits,…)
§ Algorithmic versions: Regular structure can be found efficiently

(deterministic: ܱ ݊ଶ time, randomized: ܱ(݊) time)
§ Rigorous algorithms have huge constants like:

ܱ ݇ଶ2ଶ(ೖ/ഀച)ೀ భ
݊ଶ ,	where ݇, ߙ߳/1 are bounded yet possibly very

large numbers
§ => impossible to use in practice
§ Needs some approximating scheme to find regular structure

IEEE BigGraphs 2017, Boston 11.12.2017
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Mimic Regularity Lemma in ‘practical’ way:

§ VTT -> regular decomposition algorithm for ‘Big Data’ and
machine learning
§ See also:
§ Marcello Pelillo, Ismail Elezi, Marco Fiorucci: Revealing Structure in Large Graphs:

Szemerédi's Regularity Lemma and its Use in Pattern Recognition, Pattern Recog.
Letters, 2017

§ Hannu Reittu, Fülöp Bazsó, Ilkka Norros: Regular Decomposition: an information and
graph theoretic approach to stochastic block models, ArXiv, 2017

IEEE BigGraphs 2017, Boston 11.12.2017
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Regular decomposition

IEEE BigGraphs 2017, Boston 11.12.2017

Regular groups Link densities
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→	 (ܲ), , 	݇ × ݇, symmetric, elements
0 ≤ , ≤ 1,	are link densities between
– and inside regular groups

Partition ߦ of nodes into ݇ regular
groups
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Minimum description length principle (MDL)
for finding regular decomposition:

§ Coding length of a graph given a regular decomposition:
(1) ܮ ܩ ܲ	) ≔ − logܲ ܩ ܲ =∑ ݊,ℎ , ,ଵஸஸஸ

§ ℎ  : = − log − (1 − ( log 1 −  , 0 ≤  ≤ 1, ݊,	is	# node
pairs inside (݅ = ݆) and between ݅ ≠ ݆ groups
§ Coding length of a partition ߦ
(2) ܮ ߦ = { ଵܸ, ଶܸ, … , ܸ} = −∑ ݊ log ଵஸஸݎ

§ ݎ is relative size of set ܸ	in the partition and ݊ = | ܸ|

(3) ܮ ܲ = ∑ log(݁,)ଵஸஸ , ݁,, number of links between groups
or inside groups.
§ Regular decomposition (MDL) min((1)+(2)+(3))

( ଵܸ, ଶܸ, … , ܸ∗ ) = argmin


argmin
కୀ{భ,మ,…,ೖ)

ܮ) ܩ ܲ	) + ܮ 	ߦ + ܮ ܲ )

IEEE BigGraphs 2017, Boston 11.12.2017
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Greedy regular decomposition algorithm

§ For a given ݇ make a random k-partition ,ߦ
§ Compute link densities and get link density matrix ܲ

§ Apply mapping ܲାଵ = Φ ܲ , i = 0, 1, … , until fixed point
ܲାଵ = ܲ = ܲ∗ is reached on corresponding partition ∗ߦ

§ Find coding length of the graph corresponding to (∗ߦ)ܮ,∗ߦ
§ Repeat above procedure several times and find the partition that

correspond to min over all repetition (∗ߦ)ܮ
§ Search above optimization in a range of ݇,
§ Result an approximate MDL optimal regular decomposition

IEEE BigGraphs 2017, Boston 11.12.2017
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Other related works

§ Spectral approach to regular decomposition:
Bolla,  M.: Spectral clustering and biclustering, Wiley, 2013
§ Stochastic block modeling and MDL, see e.g.
Peixoto, T.P.:   Parsimonious Model Inference in Large Networks, Phys. Rev. Lett. 110,
2013
§ Algorithmic version of reg. lemma
A Sperotto, M Pelillo: Szemerédi’s regularity lemma and its applications to pairwise
clustering and segmentation, in proc.  Energy minimization methods in computer vision and
pattern recognition, 13-27, 2007
Gábor N. Sárközy, Fei Song, Endre Szemerédi, Shubhendu Trivedi:
A Practical Regularity Partitioning Algorithm and its Applications in Clustering, Arxiv
§ Testability, graph limits, regularity, see e.g.

§ L. Lovász and B. Szegedy: Szemerédi's Lemma for the analyst, J. Geom. and Func.
Anal. 17 (2007), 252-270

IEEE BigGraphs 2017, Boston 11.12.2017



A directed weighted graph:

=>
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In regular decomposition the mapping  ∙ involves matrix
multiplication of adjacency matrix

§ => Too heavy for very large graphs
§ Claim: if a regular structure with moderate ݇ exists for a graph,

then small sample is sufficient to find regular decomposition
§ => regular decomposition is computationally feasible for big

graphs
§ Needs only to estimate link densities in every block
§ => scales and tolerates missing link data

IEEE BigGraphs 2017, Boston 11.12.2017
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Sampling:
assume we have a large regular graph – k groups with regular link
densities
§Make a small uniformly random sample of nodes
§ Retrieve links of induced small graph
§ Find regular structure of the small sample graph
§ Define a classifier based on sample graph
§ Classify all nodes of the large graph (in linear time)
§ => Compact representation of a graph => use in further analysis

IEEE BigGraphs 2017, Boston 11.12.2017
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Graphically:

IEEE BigGraphs 2017, Boston 11.12.2017
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Classifier:

IEEE BigGraphs 2017, Boston 11.12.2017

A fixed sample graph with ݇ regular groups

ߦ and a ݇ × ݇ link density matrix መ݀, and
sizes of groups ݊

Count number of links
݁ ݒ to every regular

group 1 ≤ ݆ ≤ ݇

node ݒ

choose the best
class 1 ≤ ∗ߙ ≤ ݇
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First experiments supporting conjectures of
testability:
§ 10 × 10 regular groups with uniformly random link densities
ܷ(0,1)
§ 200 nodes is enough, 50 is too little; adjacency matrix

IEEE BigGraphs 2017, Boston 11.12.2017
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Remarks:

§ Error probability as a function of sample size?
§ 4 sources of classification errors (link densities, group sizes,

misclassifications of sample, missing links)
§ Conjecture: exponentially small error probabilities

§ Proof of existence (testability of graph sampling à la Lovasz)?
§ Suggested sampling makes sense for dense graphs

§ How to extend to sparse case (different sampling style, sparse
regularity…?)

§ Similar approach should work also for real matrices, multi level
graphs, tensors, hypergraphs (partly tested on data)

IEEE BigGraphs 2017, Boston 11.12.2017
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Thank You!

IEEE BigGraphs 2017, Boston 11.12.2017


