Practical Approach to Evacuation Planning Via Network Flow and Deep Learning

Akira Tanaka* Nozomi Hata*

Nariaki Tateiwa Katsuki Fujisawa †

* Graduate School of Mathematics, Kyushu University

† Institute of Mathematics for industry, Kyushu University

December 11, 2017

2017 BigGraphs Workshop at IEEE BigData17

Evacuation Map

Yodogawa Area in Osaka City

Lexicographically Quickest Flow(LQF)

Definition

- Minimizes the evacuation time Θ^*
- Greedily maximize the cumulative number of evacuees who have already completed evacuation at every time θ in the order of $\theta = 1, 2, ..., \Theta^*$

Lexicographically Quickest Flow(LQF)

Definition

- Minimizes the evacuation time Θ^{\ast}
- Greedily maximize the cumulative number of evacuees who have already completed evacuation at every time θ in the order of θ = 1,2,..., Θ*

Lexicographically Quickest Flow(LQF)

Definition

- Minimizes the evacuation time Θ^*
- Greedily maximize the cumulative number of evacuees who have already completed evacuation at every time θ in the order of $\theta = 1, 2, ..., \Theta^*$

Practical Property

- The LQF also has a high efficiency with respect to total pedestrian flow of all evacuees to the refuges
- To check this property, we decomposed the LQF into cyclic flow and cycle-free flow by solving the QP below:

minimize

 $\sum (f(e) - f_c(e))^2$ $e \in A$

subject to

 $f_c \in \mathcal{F}_c$

 $0 \le f_c(e) \le f(e)$ $(\forall e \in A \text{ s.t. } f(e) \ge 0)$ $f(e) \le f_c(e) \le 0$

f(e) is the total refuges that passed the arc e

A: the set of arcs

 $(\forall e \in A \text{ s.t. } f(e) \le 0) \bullet \mathcal{F}_c := \{f : A \to \mathbb{R} \mid f \text{ is a cyclic flow}\}$

Visualization of LQF

constant

80

240

60

0/360

- Hue \leftrightarrow direction of movement
- Saturation \leftrightarrow speed of movement
- Value \leftrightarrow congestion of arc

Lexicographically Quickest Flow (LQF) Pros(practical property)

- Minimizes the evacuation time Θ^*
- Greedily maximize the cumulative number of evacuees

 \rightarrow More people reach shelters in the early stage

• There are few unnecessary movements

Cons

- Not practical(7h for the target area)
 - Compute the maximum flow repeatedly for the time-expanted graph.
 - Size of time-expanded graph is huge

	Original	Time-Expanded($ heta=2,824$)
#nodes	2,933	8,300,000
#edges	8,924	32,800,000

To utilize practical property of LQF, we combine it with Deep Learning

Time

Convolutional Neural Network(CNN)

Input

Output

Optimizer and Output of CNN

Euclidean Loss (cost function)

$$\frac{1}{2N} \sum_{i=1}^{N} \left\| y_i^1 - y_i^2 \right\|^2$$

 y_i^1 :Accuare output(LQF_T) y_i^2 :Predicting output N:data size

Optimizer and Output of CNN

Euclidean Loss (cost function)

$$\frac{1}{2N} \sum_{i=1}^{N} \left\| y_i^1 - y_i^2 \right\|^2$$

 y_i^1 :Accuare output(LQF_T) y_i^2 :Predicting output N:data size

Adam(optimizer)

- First-order gradient-based optimization
- \rightarrow feasible to compute in practice for high-dimensional data
- Storing exponentially decaying average of past gradient and squared gradient
- →Large updates for infrequent and smaller updates for frequent
- \rightarrow accelerate learning

Optimizer and Output of CNN

Error := |Accurate - Predicting| (Error / 2,751) Note: 2,751 is the average evacuation time Euclidean Loss (cost function)

$$\frac{1}{2N} \sum_{i=1}^{N} \left\| y_i^1 - y_i^2 \right\|^2$$

 y_i^1 :Accuare output(LQF_T) y_i^2 :Predicting output N:data size

Adam(optimizer)

- First-order gradient-based optimization
- \rightarrow feasible to compute in practice for high-dimensional data
- Storing exponentially decaying average of past gradient and squared gradient
- →Large updates for infrequent and smaller updates for frequent
 →accelerate learning

Results of Our Model

Data

#Training Data: 43,200 #Test Data: 5,400

Results of Our Model

Summary

Previous Model(LQF)

Not practical(7h)

- Compute max-flow repeatedly for <u>time-expanded graph</u>
- Time-expanded graph_is huge

Proposed Model

Practical (less than 1s)

- Combing LQF and CNN
- Predict evacuation completion time immediately(less than 1s) and almost accurately(2%)

